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Abstract

Distributed authorization takes into account several elements, includ-
ing certificates that may be provided by non-local actors. While most trust
management systems treat all assertions as equally valid up to certificate
authentication, realistic considerations may associate risk with some of
these elements, for example some actors may be less trusted than others.
Furthermore, practical online authorization may require certain levels of
risk to be tolerated. In this paper, we introduce a trust management logic
based on the system RT that incorporates formal risk assessment. This
formalization allows risk levels to be associated with authorization, and
authorization risk thresholds to be precisely specified and enforced. We
also develop an algorithm for automatic authorization in a distributed en-
vironment, that is directed by risk considerations. A variety of practical
applications are discussed.

Keywords: Distributed Authorization, Trust Management Logic.

1 Introduction

Trust management systems provide a means to specify and enforce distributed
authorization policies. Many such systems possess a formal foundation for mak-
ing authorization decisions, so that security is rigorously enforced and so that
designers and users have a clear understanding of policies and semantics. Cur-
rent state-of-the-art includes SPKI/SDSI [23, 13] and RT [19]. The expressive-
ness and rigor of these systems have become increasingly important to security
in modern distributed computing infrastructures, as web-based interactions con-
tinue to evolve in popularity and complexity.

Authorization in trust management usually takes into account several facts
and assertions, including certificates provided by non-local, untrusted actors.
Although cryptographic techniques provide certain measures of confidence in
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this setting, not all components of authorization can realistically be used with
the same level of confidence. The Pretty Good Privacy (PGP) framework ac-
knowledges this, by including a notion of trustworthiness of certificates in their
legitimacy measure [2]. Furthermore, efficient online authorization decisions of-
ten require a weakening of ideal security, since the latter may be prohibitively
expensive. This weakening may involve the acceptance of assertions that would
otherwise be verified, in case lowered confidence levels are more tolerable than
the danger of intractability. Thus, many practical distributed authorization
decisions include elements of risk associated with authorization components,
where risk could be associated with trust or other practical considerations mak-
ing some facts more or less risky than others.

A rigorous assessment of authorization should accurately assess risk, but risk
in trust management is usually an informal consideration. In this paper, we de-
velop a trust management logic called RTR, introduced in a simpler form in
previous work [11], that formally incorporates formal risk assessment. The sys-
tem is a variant of RT [19], and includes an abstract definition of risk, a means
to associate risk with individual assertions, and a semantics that assesses risk
of authorization by combining the risk of assertions used in authorization deci-
sions. This formalization promotes development of a distributed authorization
algorithm allowing tolerable levels of risk to be precisely specified and rigorously
enforced.

1.1 Contributions

The main contributions of this paper are twofold. First, we develop a rigorous
formal foundation for an authorization calculus that incorporates a notion of
risk, and aggregation of risk for particular authorization decisions, in the system
RTR. The system is designed as an extension to the system RT [20]. The
definition of risk, risk ordering, and aggregation of risk are left abstract modulo
some basic sanity requirements, so RTR is a framework for risk management in
authorization, that can be specialized for particular applications. Our theory
also features thresholds, which are formal specifications of tolerable risk. The
per-role granularity of thresholds allows different security domains to specify
their own risk tolerance, and allows these specifications to interact in particular
authorization decisions.

Our second main contribution is an algorithm for performing authorization
in a distributed setting, called distributed chain discovery. The algorithm does
not depend on all credentials for authorization to be known locally, but allows
certificates relevant to particular decisions to be retrieved dynamically from
remote locations based on a simple storage scheme. The technique is based on
one defined by other authors [21], but modified to reflect risk management as
specified in the semantics. More importantly, the algorithm is risk-directed: as
partial authorization proofs are constructed, associated risk is maintained, and
certificates that would cause thresholds to be exceeded are avoided. If risk is
chosen to reflect computational expense, this technique provides a heuristic to
improve efficiency, and modulating thresholds allows computational cost to be
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balanced with e.g. issues of trust.

1.2 Paper Outline

The remainder of the paper is organized as follows. In Sect. 2, an overview of
the RT0 system is given for background. In Sect. 3, motivations for adding risk
measures and management to authorization is discussed. In Sect. 4, we define
the syntax and set-theoretic semantics of RTR, an authorization logic with risk
assessment, including a formalization of risks, risk ordering, risk aggregation
and thresholds. It is demonstrated that this semantics provides a meaningful
interpretation of any set of credentials. The system RTR is defined as a frame-
work, and several example instances are given in Sect. 5 to illustrate the use
and flexibility of the system. In Sect. 6, we give a graph-theoretic interpreta-
tion of RTR that is equivalent to the set-theoretic semantics, and show that
so-called credential graphs can be automatically reconstructed by a distributed
chain discovery algorithm, as an implementation of distributed authorization.
In Sect. 7, we discuss some interesting practical applications of RTR, and we
conclude with a summary of the paper and remarks on related work in Sect. 8.

2 Overview of RT

Rather than defining a new trust management logic for a formalization of risk,
we take advantage of the existing RT system [19]. This system combines the
strengths of role-based access control with an expressive trust management logic,
and enjoys a variety of existing implementation techniques [21]. We believe these
features make RT one of the most advanced trust management systems, and an
appealing setting for the development of formal risk assessment.

The RT role-based trust management system is actually a collection of trust
management logics, all of which are variations on a basic logic called RT0 [19].
Variations include separation of duties and delegation. In this same spirit, we
propose a variation on RT0 to incorporate a formalization of risk assessment, so
we briefly review RT0 here to provide necessary background.

In RT0, individual actors, or principals, are called Entities and are defined
by public keys. We let A, B,C, D,E range over entities. Each entity A can
create an arbitrary number of Roles in a namespace local to the entity, denoted
A.r. The RoleExpressions of RTR, denoted f , are either entities or roles or
constructed from other role expressions by linking and intersection. Formally,
role expressions are generated by the following grammar:

f ::= A | A.r | A.r.r | f ∩ · · · ∩ f

Role expressions are used to define roles via credentials. To define a role an
entity issues credentials that specify the role’s membership. Some of these
credentials may be a part of private policy; others may be signed by the issuer
and made publically available. The overall membership of a role is taken as the
memberships specified by all the defining credentials.
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RT0 provides four credential forms:

1. A.r ←− E

This form asserts that entity E is a member of role A.r.

2. A.r ←− B.s

This form asserts that all members of role B.s are members of role A.r.
Credentials of this form can be used to delegate control over the member-
ship of a role to another entity.

3. A.r ←− B.s.t

This form asserts that for each member E of B.s, all members of role E.t
are members of role A.r. Credentials of this form can be used to delegate
control over the membership of a role to all entities that have the attribute
represented by B.s. The expression B.s.t is called a linked role.

4. A.r ←− f1 ∩ · · · ∩ fn

This form asserts that each entity that is a member of all role expression
forms f1, . . . , fn is also a member of role A.r. The expression f1 ∩ · · · ∩ fn

is called an intersection role.

Authorization is then cast as a role membership decision: an access target is
represented as some role expression f , and authorization for that target for some
entity A is equivalent to determining whether A is a member of f . In such a
decision, we call f the governing role. Authorization always assumes some given
finite set of credentials, denoted C. We use Entities(C) to represent the entities
used in a particular set of credentials C, and similarly RoleNames(C), Roles(C),
etc.

2.1 Example

Suppose a hotel H offers a room discount to certain preferred customers, who are
members of H.preferred . The policy of H is to grant a discount to all of its pre-
ferred customers in H.preferred as well as to members of certain organizations.
H defines a role H.orgs that contains the public keys of these organizations.
Into that role H places, for example, the key of the AAA, the American Auto
Association. These credentials are summarized as follows:

H.discount ←− H.preferred H.discount ←− H.orgs.members

H.orgs ←− AAA

Now imagine that at a later time a special marketing plan is created to en-
courage travelers to stay at H. A decision is made that all members of the AAA
are automatically preferred customers and thus the credential H.preferred ←−
AAA.members is added to the policy.

Finally suppose that Mary is a member of the AAA. She has a credential
issued by the AAA, AAA.members ←− M , attesting to that fact. By presenting
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this credential to H’s web service Mary can prove in two distinct ways that
she is authorized to receive the discount. On one hand she is a member of
an organization in H.orgs. On the other hand she is, indirectly, a preferred
customer of H. Certain practical considerations may motivate H’s decision
about which “proof” to use. As we’ll see in Sect. 6, specified risk thresholds in
RTR can steer authorization in the right direction.

3 Practical Motivations

Credentials in RT are all created equal, in that each represents a true statement
in the knowledge base of an authorization decision. There is no facility for
denoting that one credential may be more or less “believable” than another. In
this RT is similar to other trust management systems, such as SPKI/SDSI [13].
However, recent practice has shown that such a manichean view is not consistent
with reality. In this section we discuss practical issues that suggest the need for
a more fine-grained view of the different risks associated with credentials.

3.1 Risk as an Authentication Metric

The system RT treats PKI transparently. That is, the semantics of RT does not
concern itself with the details of associating keys with users, nor authenticating
this association. Nevertheless, credentials for authorization decisions are estab-
lished by certificates, that must be authenticated. Furthermore, authentication
is not necessarily a simple process in open distributed systems, rather modern
PKI allows for construction of global public-key namespaces on the basis of local
certification authorities. In this setting authentication can involve traversing a
chain of intermediary authorities in distinct administrative domains [7]. Dis-
tinct domains may be trusted to varying degrees, so depending on what domain
boundaries are crossed, one public key certification may be more trustworthy
than another, or there may exist multiple paths of varying degrees of trust to
establish the same certification. Authentication chains of this sort resemble cer-
tificate chains as we study them in this paper, though the latter is at a level of
abstraction above the former.

To address issues of trust in authentication chains, authentication metrics
have been developed to assign measurements of trust to particular certifications
[22]. The measure of assurance of a certification is based on the set of chains
that establish it, which are in turn based on a combination of trust measures
assigned to nodes in the chain, i.e. particular administrative domains. A number
of schemes have been proposed, including a legitimacy measure for PGP [2],
illustrating the practical relevance of the idea.

Thus, in standard authorization frameworks, the treatment of credentials
as inerrable facts ignores any degrees of assurance that are established for par-
ticular certifications. But such degrees are clearly of potential interest to the
authorizer, for example if multiple credentials are involved in a particular deci-
sion and each is of low assurance, then these may compound to yield unaccept-
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ably low assurance for the decision, whereas it may be tolerable if only one of
them has low assurance. By allowing an assignment of risks to RT credentials,
and providing a means of combining them in the authorization semantics, our
proposed extension to RT allows a formal accounting of these considerations.

3.2 Balancing Security and Efficiency

In addition to issues of trust, efficiency issues may affect the risk associated with
credentials. For example, if cryptographic certification of a particular credential
via the PKI would be too time-consuming, the authorizer may prefer to avoid
using that credential. The algorithm we define for online authorization is given
a threshold of tolerable risk for authorization, and avoids authorization chains
that exceed this threshold. Thus, our directed search technique provides a
heuristic for efficiency in case risk is measured in computational cost.

A more interesting example is the use of cached credentials. Caching cre-
dentials is a useful technique to avoid re-retrieving and re-authenticating certifi-
cates. However, certificates are commonly assigned expiration dates, as in x509
[17], and most trust management systems, including RT and SPKI/SDSI, do not
consider expiration in the formal authorization semantics but only in the initial
credential certification [13]. Therefore, re-use of a cached credential runs the risk
of re-using expired rights. Similarly, systems with certificate revocation must
take care not to re-use cached credentials that have been revoked. However, if
the system uses certificate revocation lists as does for example SPKI/SDSI [13],
maintaining a current view of revocation may be problematic due to the likely
need to update lists with non-local information. This reality is reflected in the
verify-only mode of QCM [15]. To implement certificate revocation, QCM relies
on a database of revoked certificate identifiers, but in verify-only mode its exter-
nal communications are blocked for the sake of efficiency. In such situations, our
formalism allows trust management systems to represent and manage the risks
associated with credentials that have expired or that may have been revoked.
A sufficiently abstract representation of risk even allows to balance the cost of
trusting questionable credentials against the efficiency benefits gained by their
usage, as discussed in Sect. 7.3.

4 The System RTR

The system RTR is RT0 extended with a formal definition of risk assessments.
In this section we define and characterize the syntax and semantics of RTR. We
define a set theoretic semantics for RTR, since this allows an easy correspondence
with the graph theoretic characterization of RTR for distributed chain discovery
given in the next section. Unlike RT0, the semantics of RTR not only takes into
account role membership, but the risk associated with role membership. This
semantic representation allows formal discussion of thresholds, the specification
of tolerable risk levels for role membership on a per-role basis.
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4.1 Syntax and Semantics

The system RTR is defined as a framework, parameterized by a risk ordering,
which is required to be a complete lattice (K,4). We let κ and K range over
elements and subsets of K respectively, and let > and ⊥ denote the top and
bottom elements of the lattice. Any instantiation of RTR is expected to specify
a set of lattice elements and a decidable risk ordering 4. Intuitively, 4 allows
comparison between greater and lesser risk, e.g. if one credential is more trusted
than another, or less computationally expensive to retrieve. Also, operations for
aggregating risks– that is, combining risks in proofs of authorization– must be
specified. The system provides two forms of aggregation, risk aggregation and
intersection aggregation. Each of these are total functions from pairs of risks
to risks. The latter is provided for combining risks in intersection role defini-
tions, while the former handles all other forms of aggregation. We believe this
distinction should be made, because intersection roles can represent agreement
between principals, which in practice may reduce risk. Also, this distinction
is necessary to encode certain features such as delegation depth as observed in
Sect. 5. To ensure termination and flexibility of our chain discovery algorithm
we require that both forms of aggregation be monotonic and associative.

Definition 4.1 An instance of RTR is obtained by defining a complete lattice
(K,4), where K is a set of risks and 4 is a decidable risk order relation. We
let κ and K range over elements and subsets of K respectively, and let > and
⊥ denote the top and bottom elements of the lattice. The instantiation also
includes two associative and monotonic aggregation operators: risk aggregation
⊕, and intersection aggregation ⊗.

As an example, we can instantiate RTR with the usual ≤ ordering on natu-
ral numbers plus ω as an upper bound, and specify that addition is the sole
aggregation operation.

Example 4.1 Let N , (N ∪ {ω} ,≤) where ≤ is the usual relation on natural
numbers extended such that n ≤ ω for all n ∈ N. Let ⊕ = ⊗ = +, with +
extended such that n + ω = ω for all n ∈ N ∪ {ω}. These definitions together
specify an instance of RTR.

The basis of risk assessment is the association of risk with individual cre-
dentials, since credentials are the fundamental assertions used in authorization
decisions. Thus, credentials in RTR are of the form A.r

κ←− f where κ is the
risk associated with the credential. The manner in which risks are assigned
to credentials is left unspecified, but we discuss some concrete possibilities in
Sect. 3. In essence, the aggregation of risks associated with credentials used in
an authorization decision constitutes the risk of that decision.

Definition 4.2 Given an instance of RTR, we let C range over finite sets of
credentials, and c range over individual credentials of the form A.r

κ←− f . We
refer to credential forms type 1 through 4 as in Sect. 2.
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Formally, the semantics of RTR associates risk κ with the membership of en-
tities B in roles A.r. Thus, the meaning of roles A.r are finite sets of pairs of the
form (B, κ), called RiskAssessments. Note that any RiskAssessment may asso-
ciate more than one risk with any entity, i.e. there may exist (A, κ1), (A, κ2) ∈ R
such that κ1 6= κ2. This reflects the possibility of more that one path to role
membership, each associated with incomparable risk. Taking the glb of incom-
parable risks in risk assessments as a semantic basis of RTR is unsound, since
the glb will assess a lesser risk of membership than is in fact possible to obtain
through any path.

Definition 4.3 Sets of type RiskAssessment, denoted R, are finite collections
of pairs of the form (B, κ). For any A ⊆ Entities, the type RiskAssessment(A)
denotes the set of risk assessments R such that (A, κ) ∈ R implies A ∈ A.

Of course, if a risk assessment associates two distinct but comparable risks
with a given role membership, the lesser of the two can be taken as represen-
tative. In other words, risk assessments can be taken as a set of lower bound
constraints on risk in authorization. Not only is this idea logically appealing,
but it also ensures that the semantics of RTR is constructive in the presence
of cyclic credentials. Otherwise, if every path with different risk were explicitly
represented, the monotonic aggregation of risk along a cycle could generate an
infinitely large set of increasingly expensive risk assessments for a given role
membership. In Sect. 6 we show that this semantic specification does not disal-
low the use in practice of a higher-than-minimal authorization path. We define
an equivalence relation to capture the idea, inducing equivalence classes iden-
tified by canonical risk assessments containing no (A, κ1) and (A, κ2) where
κ1 4 κ2. Furthermore, the canonical representation of any assessment R, de-
noted R̂, is decidable since assessments are finite and 4 is decidable.

Definition 4.4 Equivalence classes of risk assessments are obtained by the fol-
lowing axiom schema:

R ∪ {(A, κ1), (A, κ2)} = R ∪ {(A, κ1)} where κ1 4 κ2

We call canonical those risk assessments R where there exist no (A, κ1), (A, κ2) ∈
R such that κ1 4 κ2, and observe that any equivalence class of risk assessments
has a unique canonical form. We extend the ordering 4 to risk assessments as
follows:

R1 4 R2 ⇐⇒ ∀(A, κ1) ∈ R̂1.∃κ2.(A, κ2) ∈ R̂2 ∧ κ1 4 κ2

Hereafter we restrict our consideration to canonical risk assessments without
loss of generality.

The semantic definition is defined via several auxiliary operations. Canonical
risk assessments are combined by taking their canonical union:

Definition 4.5 The canonical union of risk assessments is denoted ], i.e. de-
fine R1 ]R2 = R̂, where R = R1 ∪R2.
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Entire risk assessments may be aggregated together, or incremented by some
risk. We therefore extend aggregation to risk assessments for notational con-
venience as follows. Note that these operations preserve canonical form of risk
assessments.

Definition 4.6 Letting ? range over {⊕,⊗}, aggregation is extended to risk
assessments as follows:

R ? κ , R̂′ where R′ = {(A, κ′ ? κ) | (A, κ′) ∈ R}
R1 ? R2 , R̂′ where R′ = {(A, κ1 ? κ2) | (A, κ1), (A, κ2) ∈ R1 ×R2}

Now we can specify the semantics of RTR, via interpretations that map roles
to risk assessments.

Definition 4.7 A role interpretation is a total function of type:

Role → RiskAssessment

Letting f and g be role interpretations, define:

f 4 g ⇐⇒ f(A.r) 4 g(A.r) for all roles A.r

An interpretation is taken to be a solution to a set of credentials if it maps each
role to the “right” risk assessment, given the intended meaning of the given
credentials. This meaning is characterized by the functionals bounds and expr,
defined in Fig. 1, and the following definition.

Definition 4.8 (Semantics of RTR) Given a set C of RTR credentials, the
solution SC of C is the least role interpretation rmem such that bounds[rmem] 4
rmem, where bounds and the auxiliary function expr, mapping interpretations
to interpretations, are defined in Fig. 1.

We discuss several extended examples of the system in Sect. 5. Here is a
brief example illustrating the semantics.

Example 4.2 Assume given the instance of RTR as defined in Example 4.1,
and let C consist of the following:

A.r0
2←− B.r3 A.r0

1←− C.r1.r2 C.r1
3←− D B.r3

4←− E

D.r2
0←− F

Then SC is the interpretation mapping every role to ∅, except:

SC(C.r1) = {(D, 3)} SC(B.r3) = {(E, 4)} SC(D.r2) = {(F, 0)}

SC(A.r0) = {(E, 6), (F, 4)}
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bounds[rmem](A.r) =
⊎

A.r
κ←−e∈C

expr[rmem](e)⊕ κ

expr[rmem](B) = {(B,⊥)}
expr[rmem](A.r) = rmem(A.r)

expr[rmem](A.r1.r2) =
⊎

(B,κ)∈rmem(A.r1)

rmem(B.r2)⊕ κ

expr[rmem](f1 ∩ · · · ∩ fn) =
⊗

1≤i≤n

expr[rmem](fi)

Figure 1: RTR semantic functions

4.2 Existence of a Solution

The semantics of RTR just defined is meaningful only if any credential set C has
a solution. We establish this by an inductive construction that converges to a
fixpoint, obtained by iterating bounds over an initial empty risk assessment.

Definition 4.9 A partial role interpretation over C is a function of type:

Roles(C) → RiskAssessment(Entities(C)))

The family of partial role interpretations over C denoted {rmemi}i∈N is defined
inductively by taking rmem0(A.r) = ∅ for every role A.r, and letting:

rmemi+1(A.r) = bounds[rmemi](A.r)

for every A.r.

The argument for existence of a solution proceeds by showing that this con-
struction converges to a fixpoint, which is clearly a solution of C.

To show that the construction converges to a fixpoint, we observe that
bounds is monotonic over a lattice of partial role interpretations over given
C. The lattice is induced by a relation that is similar to 4, but with an im-
portant difference. In each iteration, the solution is built up by adding new
elements (A, κ) to the interpretations of roles. However, the use of canonical
union ensures any such element is added only if κ is lesser than or incompara-
ble with existing elements of the solution, rather than greater than as would
be possible if bounds were monotonic in 4. Hence, we define an appropriate
ordering denoted E:

Definition 4.10 Define E as a relation on risk assessments:

R1 E R2 ⇐⇒ ∀(A, κ1) ∈ R̂1.∃κ2.(A, κ2) ∈ R̂2 ∧ κ2 4 κ1
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The relation is extended pointwise to partial role interpretations, i.e. given that f
and g are partial role interpretations, define fEg ⇐⇒ ∀A.r ∈ Dom(f).f(A.r)E
g(A.r).

We observe that E is a partial order, since 4 is:

Lemma 4.1 The relation E is a partial order on both risk assessments and
partial role interpretations.

It is essential to show that bounds is monotonic over this ordering of partial
role interpretations. The property is immediate, since both bounds and expr
are defined via operations that preserve canonical forms when combining risk
assessments, i.e. ], and ⊕ and ⊗.

Lemma 4.2 The function bounds is monotonic in E over partial role interpre-
tations.

Now we show that E induces a complete lattice structure on risk assessments
and partial role interpretations. This allows us to assert the existence of a solu-
tion, since this result and monotonicity of bounds in E implies that {rmemi}i∈N
converges to a fixpoint.

Lemma 4.3 Given finite C, the posets

(RiskAssessment(Entities(C)),E)
and

(Roles(C) → RiskAssessment(Entities(C)), E)

are complete lattices.

Proof. We begin by showing that the first poset is a complete lattice. Given
A = Entities(C) and R ⊆ RiskAssessment(A). For each entity A ∈ A let KA =
{κ | ∃R ∈ R.(A, κ) ∈ R} and let κA be the glb of KA, which must exist since
we require risk orderings to be complete lattices. Let RR = {(A, κA) | A ∈ A}.
Clearly RR is an element of RiskAssessment(A), and is a lub ofR. The existence
of a glb for R follows dually. The second poset is clearly also a complete lattice,
since the ordering in that poset is just the pointwise extension of E for risk
assessments. ut

Of course, a remaining issue is whether {rmemi}i∈N converges to a fixpoint
in a finite number of iterations. This is obviously true if we restrict our con-
sideration to finite risk domains K, since any set of partial role interpretations
forms a finite lattice under E by the preceding result. In case K is infinite, the
situation is complicated somewhat. However, any finite set of credentials C can
only be combined in a finite number of ways to obtain role membership, yield-
ing a finite number of possible membership risks, unless credentials are cyclic,
but encountering cycles only obtains increased risk of existing memberships due
to monotonicity of risk aggregation. These increased risks will be ignored by
bounds since it preserves canonical forms of risk assessments. Hence, the lattice
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of partial role interpretations relevant to a sequence {rmemi}i∈N is effectively
finite, even if K is infinite. The details of the argument are mostly tedious and
are omitted here for brevity. We assert:

Lemma 4.4 Given finite C, there exists finite n such that rmemn is a fixpoint
of bounds.

A solution is than effectively constructed from this fixpoint. Specifically, given
finite C, let rmemn be the least fixpoint of the sequence {rmemi}i∈N, and define:

SC(A.r) = rmemω(A.r) A.r ∈ Roles(C)
SC(A.r) = ∅ A.r 6∈ Roles(C)

4.3 Thresholds and Constrained Solutions

In an authorization setting that takes risk into account, acceptable levels of
risk should be specifiable as a component of policy. Furthermore, these levels
should be specifiable on a per-role basis, to allow a fine-grained view of risk
tolerance. We believe this level of flexibility is desirable, since it allows the
disparate entities maintaining particular roles to assign different levels of risk
tolerance, or allows a local authorizer to associate different levels of risk with
different entities, both of which are likely scenarios. To formalize this in our
model, we introduce thresholds Θ, which are mappings from roles to risks.

Definition 4.11 A threshold Θ is a total function of type:

Role → K
We write Θ> to denote the threshold such that Θ>(A.r) = > for all A.r, and
we write Θ[A.r : κ] to denote Θ′ such that Θ′(A.r) = κ, and Θ′(B.r′) = Θ(B.r′)
for all B.r′ 6= A.r.

Incorporating thresholds into the model is not simply a matter of elimi-
nating those elements of role solutions that exceed the given threshold. The
problem is that some role memberships that are not explicitly constrained by a
threshold may nevertheless be eliminated by it, due to a dependence on other
constrained role memberships; see Example 4.3 below. Therefore, we make a
slight modification to bounds, to take into account threshold constraints.

Definition 4.12 Given some Θ, the Θ-constrained solution SΘ
C of C is the least

role interpretation rmem such that:

boundsΘ[rmem] 4 rmem

where for all A.r:

boundsΘ[rmem](A.r)
=

{(B, κ) | (B, κ) ∈ bounds[rmem](A.r) and κ 4 Θ(A.r)}
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The existence of threshold constrained solutions is established by nearly the
same argument as that given in Sect. 4.2.

Lemma 4.5 SΘ
C exists for arbitrary Θ and C.

Here is a brief example illustrating threshold constrained solutions, high-
lighting non-local effects of constraints on role membership. Note that even
though all members of A.r0 in the full solution are below the given threshold,
one of them will be eliminated in the threshold constrained solution, due to its
dependence on the role B.r3. That is, since (E, 4) is eliminated from B.r3’s
solution by the given threshold constraint, (E, 6) cannot be established as part
of A.r0’s solution.

Example 4.3 Assume given the instance of RTR and credential set C specified
in Example 4.2. Define:

Θ = Θ>[A.r0 : 10][B.r3 : 3]

Then SΘ
C is the interpretation mapping every role to ∅, except:

SΘ
C (C.r1) = {(D, 3)} SΘ

C (D.r2) = {(F, 0)} SΘ
C (A.r0) = {(F, 4)}

5 Examples

In this section we present some instances of RTR that illustrate how the system
is used, and how it is able to capture a variety of risk management schemes.

5.1 Bound-of-Risks

In [12], an information flow security model is presented where all static data
is assigned to a security class. Security classifications of variables are then
assigned based on the combination of security classes of data flowing into those
variables, as determined by an abstract program interpretation. Security classes
are identified by elements in a complete lattice, where “class-combination” is
defined as the lub of combined classes.

We propose that an adaptation of this model is useful in the context of
authorization risk assessment. We do not propose an abstract interpretation of
authorization, incorporating some form of “may-analysis”, but rather a purely
dynamic authorization and risk assessment model, so in this sense we differ
from the model proposed in [12]. Nevertheless, we may adopt the use of least
upper bounds as a “class-combination” mechanism– in our terminology, risk
aggregation– that assesses the risk of any authorization decision as the least
upper bound of risks associated with all credentials used in the decision. Thus,
we define each of ⊕ and ⊗ as the lub operator on risks in the given partial
ordering.

Consider a risk ordering where three classifications K = {low ,medium, high}
are defined, and the following relations are imposed:

low 4 medium 4 high
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Imagine also that an online vendor called Store maintains a purchasing policy
whereby representatives of the Acme corporation have buyer power only if they
are both employees and official purchasers. Since this policy is maintained
locally, it is associated with a low risk of usage, hence Store could specify:

Store.buyer low←− Acme.purchaser ∩Acme.employee

Imagine further that Ed attempts to make a purchase from Store, providing
certificates claiming employee and purchaser status. However, if we assume
that these certificates can possibly be faked, or that role membership within
the Acme corporation has a volatile status, higher risk can be assigned to these
certificates:

Acme.employee medium←− Ed Acme.purchaser
high←− Ed

We also assume that a less risky path of establishing Ed ’s membership in the
Acme.purchaser role is through a manager certificate obtained directly from
the issuer Personnel , and via Acme’s own policy specifying purchaser power for
all managers:

Acme.purchaser low←− Personnel .manager Personnel .manager low←− Ed

Although using Ed ’s certificate asserting his membership in the Acme.purchaser
role will incur a high risk, because of the less risky path to this relation, the risk
assessment of this set of credentials will find that establishing Ed ’s membership
in the Store.buyer role requires a lower bound of medium risk. The solution for
this set of credentials is as follows:

Store.buyer : {(Ed ,medium)}
Acme.employee : {(Ed ,medium)}
Acme.purchaser : {(Ed , low)}

Personnel .manager : {(Ed , low)}
Of course, in certain cases it may be preferable to use the certificate Ed provides,
instead of going through Personnel– if wait times for distributed communication
with that node are prohibitively long, for example. In this case it should be
specified that a high level of risk will be tolerated in the credential chain. This
is accomplished by defining an appropriate threshold. Although the semantics
do not explicitly list a high risk membership in Store.buyer , it does exist, and
may be used in practice as discussed in Sect. 6.

Returning to the example, for the purposes of illustration we imagine that
the risk ordering is extended with an element moderate, that is incomparable
with medium, inducing the lattice:

¡
¡µ

@
@I

@
@I

¡
¡µ

high

medium moderate

low

14



We also imagine that Store has cached an old certificate, establishing Ed ’s
membership in the Acme.employee role with moderate risk:

Acme.employee moderate←− Ed

In this case, since moderate and medium are incomparable, the risk assessment
will reflect that Ed ’s membership in the Store.buyer and Acme.employee roles
can be established via two paths with incomparable risk:

Store.buyer : {(Ed ,medium), (Ed ,moderate)}
Acme.employee : {(Ed ,medium), (Ed ,moderate)}

5.1.1 Agreement Decreases Risk

In case a PGP-like scheme of allowing agreement to reduce risk is desired, in-
tersection aggregation can be modified appropriately without having to change
risk aggregation. For example, returning to the risk ordering comprising just
{high,medium, low}, and specifying that ⊗ be commutative, we could define:

low ⊗ low = low low ⊗medium = low low ⊗ high = low

medium⊗medium = low medium⊗high = medium high⊗high = medium

Intersection aggregation thus defined is both monotonic and associative as can
easily be checked. Given these definitions and the following credentials:

Store.buyer low←− Acme.purchaser ∩Acme.employee

Acme.employee medium←− Ed Acme.purchaser
high←− Ed

role memberships will reflect the reduction in risk achieved via intersection:

Store.buyer : {(Ed ,medium)}
Acme.employee : {(Ed ,medium)}
Acme.purchaser : {(Ed , high)}

5.2 Sum-of-Risks

An alternative to the bound-of-risks model is a sum-of-risks model, where cre-
dentials are assigned numeric risk values and the total risk for any authorization
decision is the sum of all risks associated with the credentials used in the deci-
sion. Thus, we take the risk ordering in this model to be the lattice of natural
numbers up to ω induced by ≤, and we take ⊕ and ⊗ to be addition. This model
is useful in case risk is considered additive, or in case the number of credentials
used in an authorization decision is an element of risk, the more the riskier.
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Imagining a similar situation as above, the following risks could be assigned,
where 1 is considered “not risky” and 4 is considered “risky”:

Store.buyer 1←− Acme.purchaser ∩Acme.employee Acme.employee 3←− Ed

Acme.purchaser
4←− Ed Acme.purchaser 2←− Personnel .manager

Personnel .manager 3←− Ed

Note that Ed ’s certificate claiming membership in the role Acme.purchaser
is still assigned higher risk than both the certificate establishing his manager
status and the certificate establishing purchaser rights for managers. However,
the sum-of-risks model will still ascertain that the use of Ed ’s certificate will
be the least risky way to establish his membership in the Store.buyer role. The
solution of the given credentials will comprise the following risk assessments:

Store.buyer : {(Ed , 8 )}
Acme.employee : {(Ed , 3 )}
Acme.purchaser : {(Ed , 4 )}

Personnel .manager : {(Ed , 3 )}
If a pure count of credentials used in authorization is the basis of risk assessment,
this model can be formally obtained in the sum-of-risks model by associating
risk 1 with every credential.

Just as in the bound-of-risks model, intersection aggregation can be modified
to interpret agreement as reducing risk. For example, ⊗ can be defined as the
average of its operands, or some other fraction of their sum.

5.3 Delegation Depth and Width

In RT0, type 2 credentials allow delegation of authority across domain bound-
aries. For example, the credential A.r0 ←− B.r1 allows the entity A to delegate
authority to define a role within its namespace to the entity B, which may de-
note a different security domain. Furthermore, B is able to delegate authority
to define A.r0 to another entity C via the credential B.r1 ←− C.r2. However,
as observed by various authors, trust is not necessarily transitive, so that A
may wish to prevent B from from further delegation of authority to define A.r0

to C or anyone else. This sort of control might also be more fine-grained, in
that A might wish to allow one level of delegation of authority to define A.r0,
from B to C for example, but no further, so that C should not be allowed to
delegate authority to define A.r0 to another entity. The idea clearly generalizes
to delegations of arbitrary depth.

The system RT as originally conceived [19] does not allow delegation depth
to be restricted in this way. An extension of RT0 called RT+ [16] was proposed
to allow expression of delegation depth policies. Here, we show how to specify
similar delegation depth control policies in an instance of RTR.
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Assume given N as defined in Example 4.1 as a risk ordering. The encoding
is then based on a numeric representation of depth for individual credentials.
We consider the specification of risk values and aggregation operations by con-
sidering each credential type in turn. Type 1 credentials define a role member-
ship directly within a namespace, so the delegation depth associated with those
credentials is 0. Hence, all credentials match the schema:

A.r
0←− B

Type 2 credentials do allow delegation of role definition authority, so type
2 credentials have a delegation depth of 1 if the delegation crosses namespaces.
Otherwise the depth of a type 2 credential is 0. Hence, all type 2 credentials
match the schemas:

A.r1
0←− A.r2

A.r1
1←− B.r2 A 6= B

Naturally, risk aggregation is defined as addition, so that depth is added as
credential edges are crossed:

κ1 ⊕ κ2 , κ1 + κ2

Type 3 credentials allow indirect delegation. Recall that an RT0 credential
of the form A.r1 ←− B.r2.r3 allows us to assert that C ∈ A.r1 if D ∈ B.r2 and
C ∈ D.r3. In our view, this means that B is thereby capable of delegating to D
the authority to define A.r1, and therefore also A delegates to B the authority to
define the role. So firstly, this means that type 3 credentials should be assigned
a delegation depth of 1 if A and B are distinct namespaces, and 0 otherwise:

A.r1
0←− A.r2.r3

A.r1
1←− B.r2.r3 A 6= B

Secondly, given some credential A.r1 ←− B.r2.r3, linking aggregation should
sum the delegation depth associated with determining D ∈ B.r2 with the del-
egation depth associated with determining C ∈ D.r3 to determine C ∈ A.r1.
Hence, linking aggregation is also defined as addition:

κ1 ⊕ κ2 , κ1 + κ2

We note that our model differs from the RT+ model with respect to risk ag-
gregation and depth of type 3 credentials. In that paper, type 3 credentials are
always assigned depth 1, and the depth associated with determining D ∈ B.r2

is ignored in linking aggregation. The authors do not clarify the reasons for
these choices, but we believe they are flawed. Regarding the depth of type 3
credentials, consider the following RT0 example:

A.r1 ←− A.r2.r3 A.r2 ←− A.r3 A.r3 ←− B
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These credentials allow us to establish that B ∈ A.r1 with no delegation of
authority, whereas the scheme in RT+ would assign a delegation depth of 1.
Multiple links within the same namespace would extend the spurious depth,
allowing arbitrarily large overestimates of delegation depth.

Underestimates of delegation depth are also possible given the scheme in
RT+, as follows. Consider the following credentials, where C1.s1 ←− · · · ←−
Cn.sn denotes n− 1 type 2 credentials in the obvious manner.

A.r1 ←− B.r2 B.r2 ←− C1.s1 C1.s1 ←− · · · ←− Cn.sn Cn.sn ←− D

Assuming that A, B, D, and C1, . . . , Cn all denote distinct namespaces, estab-
lishing D ∈ A.r1 involves a delegation depth of n+1. However, there is an easy
attack that B can use to reduce an n + 1 delegation depth to a depth of 2: B
could eliminate B.r2 ←− C1.s1, and add the following credentials:

B.r2 ←− B.r3.r4 B.r3 ←− B B.r4 ←− C1.s1

In contrast, our monotonicity requirements on aggregation prevents such an
attack.

In intersection roles, depth of components should not be summed, instead
each component should be considered an independent “branch”. Intersection
aggregation is therefore defined as the max height of its operands:

κ1 ⊗ κ2 , max (κ1, κ2)

Like the other credential forms, type 4 credentials are assigned a depth risk on
the basis of whether they cross domain boundaries. Since role expressions of
any form may be intersected, we need to specify the subjects of role expressions:

subjects(A) = ∅
subjects(A.r) = {A}

subjects(A.r1.r2) = {A}
subjects(f1 ∩ · · · ∩ fn) = subjects(f1) ∪ · · · ∪ subjects(fn)

and we assign depth risks to type 4 credentials as follows:

A.r
0←− f1 ∩ · · · ∩ fn if subjects(f1 ∩ · · · ∩ fn) ⊆ {A}

A.r
1←− f1 ∩ · · · ∩ fn if subjects(f1 ∩ · · · ∩ fn) * {A}

5.3.1 Controlling Delegation Width

The designers of SPKI/SDSI provided a simple scheme of boolean control for
delegation, expressible in our model by specifying a threshold Θ such that
Θ(A.r) = ω if it was desired that authority over the role A.r could be dele-
gated, and Θ(A.r) = 0 if not. The complexity of full integer depth control as
in our general model was not adopted, in part because depth control does not
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control delegation width, hence does not address problems of proliferation [13].
Any given principal may delegate authority to an unlimited number of other
principals:

A.r ←− B1.s1 · · · A.r ←− Bn.sn A 6= B1 6= · · · 6= Bn

and notions of delegation depth provide no control on the size of n. Furthermore,
this “fanning out” can continue more than one level deep in the credential chain,
in that authority over any role Bi.ri may in turn be delegated to an arbitrary
number of principals, and so on.

However, forms of width control can be obtained by appropriate instantia-
tions of RTR. In particular, limits can be placed on the sets of principals to
which authority can be delegated for a given role definition. Letting P be the
set of principals, we take the set of risks K to be the powerset of P, risk ordering
4 to be set containment, and both forms of aggregation {⊕,⊗} to be set union.
Credential risks are then defined as the set of subjects in the credential, so that
all credentials adhere to the following schema:

B.s
subjects(f)←−−−−−−− f

Now, suppose that A wished to specify that only principals in the set
{B,C, D} should be allowed any sort of authority over the role A.r. In this
case a threshold Θ would be defined such that Θ(A.r) = {B, C, D}, and sup-
pose that Θ maps all other roles to P for the purposes of the example. Hence,
given the following set of credentials:

A.r
{B}←− B.s B.s

{C}←− C.q B.s
{E}←− E.q C.q

∅←− E E.q
∅←− D

The Θ-constrained solution is as follows:

E.q : {(D,∅)}
C.q : {(E,∅)}
B.s : {(D, {E}), (E, {C})}
A.r : {(E, {B, C})}

Note that D cannot be established as a member of A.r, since it can be so only
under the authority of E which is disallowed by the width threshold for A.r.

6 RTR Distributed Credential Chain Discovery

In this section we discuss an algorithm for authorization with risk in a dis-
tributed environment, where not all credentials are required to be known a
priori. Rather, non-local certificates may be retrieved automatically to estab-
lish new credentials if necessary. Following RT credential chain discovery [21],
our technique is to characterize credential sets graph-theoretically, except that
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our credential graphs are risk-weighted multigraphs, to accommodate risk as-
sessments. Credential graphs are shown to be a full abstraction of solutions
as in Definition 4.8, and the RTR discovery algorithm is shown to correctly
reconstruct credential graphs.

In addition to theoretical correctness, our chain discovery algorithm has two
important practical features:

1. The algorithm need not verify a role membership in a risk-optimal fashion,
but rather is parameterized by a threshold, specifying maximum tolerable
risks for role memberships.

2. The discovery procedure is directed, in the sense that it is aborted along
search paths whose risk overruns the maximum threshold.

The first feature allows end-users to modulate tolerable levels of risk in autho-
rization. The second feature reaps any efficiency benefits intended by associating
risks with credentials, as high risk may be associated with high expense, e.g. if
risks are wait times.

6.1 Credential Graphs

We begin by defining an interpretation of credential sets C as a credential graph.
More precisely, a set of credentials is interpreted as a weighted multigraph, where
nodes are role expressions, edges are credentials, and weights are risks. Autho-
rization is implemented by determining reachability, via risk weighted paths,
where the aggregation of edge risk along the path is the risk of authorization.
Reachability is predicated on simple paths, since traversing cycles can only in-
crease risk due to monotonicity of risk aggregation, and any path with a cycle
would otherwise generate an infinite number of risk weighted paths. Allowing
the latter would preclude a constructive definition of credential graphs, since
chains are distinguished by risk and cycle traversal increases risk monotonically.

Definition 6.1 (Risk weighted credential chains) Letting G = (N, E) be a
multigraph with nodes f ∈ N and edges f1 −κ−→ f2 ∈ E weighted by elements κ of
a given risk ordering, the pair:

((f1, . . . , fn), κ1 ⊕ · · · ⊕ κn−1)

is a risk weighted path in G iff for all i ∈ [1..n− 1], there exists fi −κi−→ fi+1 ∈ E.
A weighted path ((f1, . . . , fn), κ) is simple iff no node is repeated in (f1, . . . , fn).
We write f −κ−³ f ′, pronounced “there exists a credential chain from f to f ′ with
risk κ”, iff ((f, . . . , f ′), κ) is a simple risk weighted path. We write f −κ−³ f ′ ∈ G
iff f −κ−³ f ′ holds given G.

The ability to isolate different weighted paths between the same nodes in a
graph benefits our larger goals. In particular, while credential solutions in the
sense defined in Sect. 4 explicitly reflect only minimal risks associated with
role membership, the abstraction of paths allows a formal designation of role

20



memberships with comparable but unequal risk– given some graph G, it may
be the case that A −κ−³ B.r ∈ G and A −κ′−³ B.r ∈ G where κ 4 κ′ and κ 6= κ′.
The ability to establish role membership with non-minimal risk is an important
feature of our distributed chain discovery algorithm defined below.

The definition of credential graphs is founded on the definition of risk weighted
chains, since edges derived from linked and intersection credentials are supported
by them.

Definition 6.2 (Credential graph) Given finite C, its credential graph is a
weighted multigraph GC = (NC , EC), where:

NC =
⋃

A.r
κ←−e

{A.r, e}

And EC is the least set of risk-weighted edges satisfying the following closure
properties:

1. If A.r
κ←− e ∈ C then e −κ−→ A.r ∈ EC.

2. If B.r2, A.r1.r2 ∈ NC and B −κ−³ A.r1, then B.r2 −κ−→ A.r1.r2 ∈ EC.
3. If D, f1 ∩ · · · ∩ fn ∈ NC and for each i ∈ [1..n] there exists D −κi−³ fi, then

D −κ−→ f1 ∩ · · · ∩ fn ∈ EC, where κ = κ1 ⊗ · · · ⊗ κn.

The definition of credential graphs can be made constructive by iterating
closure over an initial edge set E0

C :

E0
C =

{
A.r −κ−→ e | A.r

κ←− e ∈ C
}

In rules (2) and (3), the paths predicating membership in EC are called support
paths, and the edges are called derived. On each iteration, add a new weighted
edge according to closure rule (2) or (3). Since C is finite, and support paths
must be simple, the process will reach a fixpoint in a finite number of iterations;
this fixpoint is EC .

We observe that the characterization of credential sets C is sound and com-
plete with respect to the set theoretic semantics given in the previous section.
These results will form a bridge with the semantics of RTR for establishing
correctness of credential chain discovery. The statement of soundness reflects
the fact that while risk assessments of credential sets express minimum risk
bounds of role membership, the credential graph does not preclude reachability
via paths of higher risk.

Theorem 6.1 (Soundness) For all B,A.r, if B −κ−³ A.r ∈ GC, then (B, κ′) ∈
SC(A.r) with κ′ 4 κ.

Following [21], the result follows by a double induction; an outer induction on
the number of closure iterations to obtain the graph GC , and an inner induction
on the length of the path B −κ−³ A.r.

The statement of completeness reflects that any assessed risk is the weight
of some related path in the graph:
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Theorem 6.2 (Completeness) For all A.r, if (B, κ) ∈ SC(A.r), then B −κ−³
A.r ∈ GC.
Following [21], the result follows by induction on n, where rmemn is a fixpoint
of bounds as constructed in Sect. 4.2. Proofs for both of these results are
uninteresting modifications of analogous results in [21], and we omit them here
for brevity.

6.1.1 Threshold-Constrained Credential Chains

Some additional definitions are required to incorporate thresholds into the graph
model of credentials. Given a particular threshold, we need to filter out those
paths that exceed a given threshold. But because a threshold has role-level
granularity, the filtering of a path must take into account the filtering of its
role-terminated subpaths. In the case of intersection and linking nodes, we also
need to take into account the paths supporting the derived edges leading into
them.

Definition 6.3 Given GC. A tail of a chain f1 −κ−³ f2 ∈ GC is a chain f1 −κ
′−³

f ′ ∈ GC such that f ′ −κ′′−→ f2 ∈ EC and κ = κ′⊕κ′′. The chains B −κ−³ A.r1, f −κ
′′−³

B.r2 ∈ GC support f −κ′−³ A.r1.r2 ∈ GC iff f −κ′′−³ B.r2 ∈ GC is a tail of f −κ−³
A.r1.r2 ∈ GC and κ = κ′ ⊕ κ′′. The chains B −κ1−³ f1, . . . , B −κn−³ fn ∈ GC are
said to support B −κ−³ f1 ∩ · · · ∩ fn ∈ GC iff κ = κ1 ⊗ · · · ⊗ κn.

Now we can define the threshold constrained credential chains as a predicate on
the paths in a credential graph.

Definition 6.4 The set of Θ-constrained credential chains of GC, written GΘ
C ,

is a subset of GC where membership is predicated on the following inductively
defined conditions:

D −κ−³ A.r ∈ GΘ
C if κ 4 Θ(A.r) and D −κ−→ A.r ∈ EC

D −κ−³ A.r ∈ GΘ
C if κ 4 Θ(A.r) and ∃c ∈ GΘ

C . c is a tail of D −κ−³ A.r

D −κ−³ A.r1.r2 ∈ GΘ
C if ∃c1, c2 ∈ GΘ

C . c1, c2 support D −κ−³ A.r1.r2

D −κ−³ f1 ∩ · · · ∩ fn ∈ GΘ
C if ∃c1, . . . , cn ∈ GΘ

C .

c1, . . . , cn support D −κ−³ f1 ∩ · · · ∩ fn

Full abstraction of the constrained graph model with respect to the set theoretic
model is established via the following theorems.

Theorem 6.3 For all B, A.r, if B −κ−³ A.r ∈ GΘ
C , then (B, κ′) ∈ SΘ

C (A.r) with
κ′ 4 κ.

Theorem 6.4 For all A.r, if (B, κ) ∈ SΘ
C (A.r), then B −κ−³ A.r ∈ GΘ

C .

The results follow by a straightforward generalization of Theorem 6.1 and The-
orem 6.2.
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6.2 Backward Chain Discovery Algorithm checkmem

In centralized chain discovery, all credentials are maintained locally by assump-
tion. In distributed chain discovery, some credentials may be retrieved over the
network, in the form of certificates. This of course presupposes that the location
of certificates can be determined in some manner. Backwards chain discovery
assumes that the certificates for credentials defining a role A.r are obtained
from the entity A, so that chains need to be reconstructed “backwards”, begin-
ning with the governing role of an authorization decision [21]. We now define a
backwards credential chain discovery algorithm checkmem for RTR, possessing
features described at the beginning of Sect. 6. We abstract the details of creden-
tial retrieval and risk assignment, other than its “backwards” nature, assuming
that remote risk-weighted credentials can always be retrieved on demand (and
cached, presumably). Forwards and mixed discovery techniques for RT are also
discussed in previous work [21]; analogous techniques for RTR can be adapted
in the same way as we have adapted backward discovery here.

Much like the algorithm developed for RT0, we define distributed chain dis-
covery for RTR as a credential graph reconstruction algorithm. The primary
difference is that ours maintains a record of the risk encountered along partially
reconstructed paths. If this “search risk” exceeds the maximum tolerable risk
allowed by a given threshold, then search along that path is aborted. Mono-
tonicity and associativity of risk aggregation ensures that any fully reconstructed
paths in that direction would exceed the threshold, so aborting search in this
manner is a heuristic to improve efficiency of search for threshold-constrained
solutions.

In the following text, we describe an algorithm checkmem in English, for
which we have developed a prototype implementation in OCaml described in
Appendix A. The English description refers to the Appendix in key spots for
clarification. The algorithm checkmem itself is described in Sect. 6.2.4, after
preceding sections that describe data structures and auxiliary functions used by
the algorithm.

6.2.1 Data Structures and Strategy

The overall strategy of the algorithm is based on graph search techniques. The
central data structures of the algorithm are nodes, each of which are uniquely
identified by a role expression f . Every node contains the following mutable
component structures:

Solution. A risk assessment (Definition 4.3) for membership in the identifying
role expression f . That is, a set of elements of the form (B, κ) denoting
that B has been determined to be a member of the role expression f , with
risk κ. Note that this use of the term “solution” is slightly abusive given
Definition 4.8, since here membership is assessed for role expressions f in
general and not just roles.

Search Risks. The aggregate risk-so-far that it took to search from particular
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roles to the identifying role expression f . Search risks differ from solutions,
in that they reflect the cost of search, not the cost of membership, and
are in essence a running under-approximation of how risky it would be to
establish membership in a role along the path traversed by search from
that role.

Search Risk Propagaters. Functions for propagating search risks along paths
already searched. Each risk propagation function living at a node f is de-
fined with respect to a local node parameter f ′, such that a search edge
from f to f ′ has been explored. Future search risks are propagated along
this edge via invocation of the function.

Solution Monitors. Functions for propagating newly-discovered solutions along
paths already searched. Each solution monitor function living at a node
f is defined with respect to a local node parameter f ′, such that a cre-
dential graph edge from f to f ′ has been discovered. Future solutions are
propagated along this edge via invocation of the function.

Search risks, propagaters, and solution monitors are discussed in more detail
below. In essence, during a run of the algorithm, new nodes are created for role
expressions discovered along credential paths. The components of an initialized
node are all empty. After initialization, node solutions and search risks are
updated to reflect flow through the graph structure known at that point in
time. The same nodes are later mutated to reflect newly discovered graph
structure, via propagater and monitor functions, that invoke each other in chains
reflecting discovered graph edge structure. Nodes are specified by the type node
in Appendix A.1.

6.2.2 Search Risks

Thresholds allow per-role specification of tolerable membership risks. Since
backwards search proceeds backwards along credential graph edges, search re-
constructs partial risk-weighted credential paths. Furthermore, the aggregate
search risk along these paths is always a conservative approximation of role
membership along these paths. Hence, as search proceeds away from a role
node A.r, search can be aborted when the aggregation of risks encountered ex-
ceeds Θ(A.r) for given threshold Θ, since any role membership along that path
is sure to exceed threshold.

Nodes f therefore maintain a set of search risks of the form (A.r, κ) repre-
senting the aggregation of risks along a search path from A.r to f . A node is
searchable only if its search risk are below-threshold, in the following sense.

Definition 6.5 A search risk is a tuple of the form (A.r, κ). We let S range
over sets of search risks. We say that A.r is included in a set of search risks S
iff there exists κ such that (A.r, κ) ∈ S. Given some Θ, a set of search risks S is
below threshold iff for all A.r included in S, there exists κ such that (A.r, κ) ∈ S
and κ 4 Θ(A.r).

The type of search risks is specified as search risk in Appendix A.1.
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6.2.3 Search Risk Propagaters and Solution Monitors

Any given node in the credential graph can be discovered more than once during
search, but to ensure termination we require that any given node can only be
searched once, as is usually the case in graph search algorithms. But it is
important to maintain discovered graph structure, so that newly discovered
information about the graph can be propagated to already-searched nodes. We
use functions called search risk propagaters and solution monitors, to maintain
graph structure and propagate information, specified as types propagater and
monitor in Appendix A.1. These functions propagate search risks and solutions
along edges. Each function lives at a node f , which is the source of the edge,
and is always defined with respect to a node f ′ that is the sink of the edge.

To propagate search risks backward along search paths, we define side-
effecting functions called search risk propagaters. This functionality is necessary
since less risky search paths may be discovered to already-visited nodes. When-
ever a node f is notified to add a new risk (A.r, κ) to its search risks (as defined
by function risk notify in Appendix A.3), if there does not exist (A.r, κ′) al-
ready in f ’s search risks such that κ′ 4 κ, then (A.r, κ) is added, and all of
f ’s search risk propagaters are invoked on (A.r, κ). Each propagater is defined
with respect to a node f ′ denoting the node to which the search risk should be
propagated.

A search risk propagater for a node f ′ and a risk κ′ is a function abstracted
on search risks (A.r, κ) that notifies f ′ to add (A.r, κ′ ⊕ κ) to its search
risks. The function make propagater in Appendix A.3 generates search
risk propagaters.

Solution monitors propagate solution elements (A, κ) forward along discov-
ered edges, aggregating edge risks as they go; their control flow structure mimics
the discovered graph structure. At the same time, they also enforce the thresh-
old Θ supplied as a parameter to checkmem. Whenever a node f is notified to add
a solution element (A, κ) (as defined by function soln notify in Appendix A.3),
the element is added to f ’s solution and all of f ’s solution monitors are applied
to it, on two conditions: (1) there does not exist κ′ 4 κ such that (A, κ′) is
already in f ’s solution (in which case we say it is canonically new), and (2) if
f is a role A.r then κ 4 Θ(A.r). There are three classes of solution monitors,
generated by functions make nmonitor, make lmonitor, and make imonitor as
specified in Appendix A.3. Each monitor form is defined with respect to a
given role expression, denoting the node to which the given solution should be
propagated:

1. A node monitor for a given node f and edge risk κ is a function ab-
stracted on solution elements (B, κ′), that notifies f to add (B, κ′ ⊕ κ) to
its solutions.

2. A linking monitor for a given linked role A.r1.r2 is a function abstracted
on solution elements (B, κ), that creates a node monitor for A.r1.r2 and κ,
applies it to each known element of B.r2’s solution, and adds it to B.r2’s
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solution monitors to propagate solutions yet to be discovered. Also, given
all search risks (C.s, κ′) of A.r1.r2, B.r2 is notified to add (C.s, κ ⊕ κ′)
to its search risks, a search risk propagater for B.r2 and κ is added to
A.r1.r2’s search risk propagaters, and B.r2 is added to the queue if it
hasn’t already been.

3. An intersection monitor for a given intersection role f1 ∩ · · · ∩ fn is a
function abstracted on solution elements (B, κ), that applies a node mon-
itor for f1 ∩ · · · ∩ fn and ⊥ to each element (B, κ′) in the the assessment
R1⊗· · ·⊗Rn, where each Ri is the assessment of fi in the current solution.

6.2.4 Node Processing

Given entity A, role B.r and threshold Θ, the algorithm checkmem reconstructs
a proof graph, to check membership of A in role B.r within a given threshold
Θ. The algorithm maintains two mutable global data structures: a list of nodes
created during execution of the algorithm, and a queue of nodes to be searched.
These are specified as nodes and q in Appendix A.2. Whenever a role expression
f is first encountered during search, an initialized node identified by f is added
to nodes.

Upon invocation, the algorithm checkmem, defined in Appendix A.4, clears
q and nodes. The node B.r is initialized and added to q and nodes. While the
queue contains at least one element whose search risks are below threshold Θ,
such below threshold nodes are taken from the queue individually for searching.
Above threshold nodes are not explored, since any solution paths that encounter
them are sure to overrun the risk threshold specified for the node. But neither
are they eliminated, since future search may find new below threshold paths to
them. The algorithm runs until there are no below threshold nodes left in the
queue, or until an element (A, κ) is added to B.r’s solutions with κ 4 Θ(B.r),
signalling that a Θ-constrained path A −κ−³ B.r has been discovered.

Whenever nodes are taken from the queue, they are processed depending on
their form:

1. To process an entity A, the node A is notified to add (A,⊥) as a solution
to itself.

2. To process a role A.r, the credentials defining A.r are retrieved. For
each such credential A.r

κ←− f , a node monitor for A.r and κ is created, is
applied to all of f ’s known solutions, and is added to f ’s solution monitors
for propagating solutions still to be discovered. Also, A.r is notified to add
(A.r,⊥) to its search risks, and given all search risks (B.s, κ′) of A.r, f is
notified to add (B.s, κ′ ⊕ κ) to its search risks. A search risk propagater
for f and κ is added to A.r’s search risk propagaters, and f is added to
the queue if it hasn’t already been. The auxiliary function process creds
defined in Appendix A.4 implements much of this.

3. To process a linked role A.r1.r2, a linking monitor for A.r1.r2 is created,
is applied to all of A.r1’s known solutions, and is added to A.r1’s solution
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monitors. The node A.r1 is notified to add the search risks of A.r1.r2 to
its own search risks, A.r1.r2 acquires a search risk propagater for A.r1 and
⊥, and A.r1 is added to the queue if it hasn’t already been.

4. To process an intersection role f1 ∩ · · · ∩ fn, an intersection monitor for
f1∩· · ·∩fn is created, and added to each fi. For each fi and every search
risk (A.r, κ) of f1 ∩ · · · ∩ fn, the node fi is notified to add the search risk
(A.r, κ) and the node f1 ∩ · · · ∩ fn acquires a search risk propagater for fi

and ⊥, and each fi is added to the queue if it hasn’t already been. The
auxiliary function process isect defined in Appendix A.4 implements
much of this.

The algorithm checkmem defined in Appendix A raises an exception Solved if
the node A.r is notified to add a solution (B, κ) such that κ 4 Θ(A.r). At the
top-level, we write checkmem(A,B.r,Θ) to denote invocation of a function that
calls checkmem on our OCaml representation of arguments, and that returns
true if this call raises a Solved exception and false if it terminates unexcep-
tionally. Hence, given a set of distributed credentials C, when an invocation
checkmem(A,B.r,Θ) terminates, the algorithm returns true iff there exists κ
such that (A, κ) ∈ SΘ

C .

6.2.5 Properties

Assuming that defining credentials can always be obtained for any role, we assert
that checkmem satisfies the following properties, demonstrating that it correctly
reconstructs credential graphs. Since credential graphs are full abstractions of
the RTR semantics as discussed in Sect. 6.1, these results demonstrate that
checkmem is a correct implementation of RTR. The proofs, omitted here for
brevity, are straightforward extensions of results in [21], since our checkmem
algorithm is an extension of the backward algorithm described in that paper.
Note that these results presuppose that credentials are stored in a manner that
allows backwards chain reconstruction: we say that a set of credentials C is
distributed if they are stored in a manner that allows lookup given the credential
issuer.

Theorem 6.5 (Soundness) Given a set of distributed credentials C, if an in-
vocation checkmem(A,B.r,Θ) holds then there exists κ such that (A, κ) ∈ SΘ

C .

Theorem 6.6 (Completeness) Given a set of distributed credentials C, if
there exists κ such that (A, κ) ∈ SΘ

C then checkmem(A,B.r,Θ) holds.

For our algorithm, an issue highly relevant to completeness is how search risks
are computed. Recalling that discovery will not proceed along paths where
search risks are over-threshold, it is essential to observe that search risks are
indeed under-approximations of role membership risk. Othermise, search could
be aborted along paths that would otherwise discover solutions within the given
threshold constraint, resulting in incompleteness. This property is expressed via
the following lemma.
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Lemma 6.1 Given a set of distributed credentials C, at any point during exe-
cution of checkmem(C, B.s, Θ) for arbitrary C, B.s, and Θ, if a node identified
by a role expression f contains (A.r, κ) in its search risks, then f −κ′−³ A.r ∈ GC
such that κ′ 4 κ.

We also observe that the algorithm terminates given a finite set of credentials,
regardless of the given threshold. This is because nodes are never visited more
than once, and solution monitors will not traverse any graph cycle, and hence
are guaranteed to terminate. Solution monitors only propagate canonically new
members, but traversal of a cycle necessarily causes a monotonic increase in a
solution’s risk assessment, hence canonical containment in an existing solution.
Search risk propagaters are similarly guaranteed to terminate.

Theorem 6.7 (Termination) Given a finite set of distributed credentials C,
for all B, A.r, and Θ, checkmem(B, A.r,Θ) terminates.

6.2.6 Discussion: Example

We now provide a graphical example that illustrates how the algorithm works.
While the algorithm possesses a number of technical details, its basic operation
is fairly straightforward as the graphic shows. Assume given the natural number
risk ordering defined in Example 4.1, where aggregation is addition. Modifying
the Example in Sect. 2.1, assume that the following credentials are stored with
their issuers, numbered here (i) through (v) for later reference:

H.discount 15←− H.preferred (i) H.discount 5←− H.orgs.members (ii)

H.orgs 10←− AAA (iii) H.preferred 7←− AAA.members (iv)

AAA.members 4←− Mary (v)

Finally, define Θ as the threshold that maps H.discount to 20 and every other
role to ω. In Fig. 2, we show how a credential graph evolves during a run of:

checkmem(H.discount ,Mary , Θ)

in subfigures (a) through (f). Nodes in the graph are represented by circles, and
edges along which solution monitors will propagate solutions by arrows, labeled
by the risk aggregated by traversing that edge. Each node is labeled with three
possibly blank lines: its role expression identifier on the first line, its search
risk from role H.discount on the second, and its solution on the third. Only
search risks from H.discount are denoted since all others are unconstrained by
Θ and therefore irrelevant to the algorithm. We now describe each subfigure (a)
through (f) in order.

(a) Initially, the node H.discount is added to the graph, with a search risk of
0 from itself.
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Figure 2: Graphical Example of checkmem Execution
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(b) After retrieval of credentials (i) and (ii) defining role H.discount , the nodes
H.preferred and H.orgs.members are added to the graph with the appro-
priate search risks from H.discount .

(c) Assuming that node H.preferred is added before H.preferred , the former
is the next to be searched, resulting in retrieval of credential (iv) and the
addition of node AAA.members to the graph with its search risk from
H.discount being the aggregate of preceding risks.

(d) Since the current search risk of AAA.members from H.discount is above
the threshold specified by Θ, the search will proceed by exploring the next
below-threshold node in the queue, which is H.orgs.members. This results
in the addition of the node H.orgs to the graph.

(e) Since H.orgs is now the next unsearched below-threshold node in the
queue, credential (iii) will be retrieved, so that node AAA is added to the
graph. Also, for the first time, solutions are added to the graph: (AAA, 0)
is added to AAA’s solution, as is (AAA, 10) to H.orgs ’s, the latter by a
solution monitor.

(f) The previous step reduced the search risk of AAA.members from H.discount
to 15, so the former node is now below-threshold and searchable. This re-
sults in retrieval of credential (v), and the addition of node Mary to the
graph. Since Mary is an entity, (Mary , 0) is added to Marys’s solution,
and propagated backwards with aggregated risk by solution monitors. This
results in the addition of (Mary , 19) to node H.discount , so the algorithm
terminates with success.

6.2.7 Discussion: Refinements

There are two particular instances where the definition of checkmem could be en-
hanced, for more eager short-circuiting of chain discovery in case risk thresholds
are exceeded along discovery paths. First, observe that credentials are retrieved
before being checked to see if their risks will force the discovery threshold to
be exceeded. However, risks such as expected wait time suggest that it is more
practical for credentials to be retrieved after ensuring they won’t overrun the
threshold. A number of minor variations on checkmem can be imagined that
will address this.

A more interesting enhancement is relevant to the propagation of search
risks along discovery paths leading from intersection nodes. Observe that from
any intersection role f1∩· · ·∩fn, the search risks of f1∩· · ·∩fn are propagated
to each fi. However, this could be a under-approximation of search risks for
any given fi. For example, suppose that A is being checked for authorization
and (A, κ) is known to be the only possible assessment of A in f1’s solution.
When checking fn, the search risks of fn inherited from f1 ∩ · · · ∩ fn could be
aggregated with κ, since κ is certain to be a component risk of any authorization
supported by discovery from fn.
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7 Applications

In this section we discuss interesting applications of RTR. Details of these
applications are avenues for future work.

7.1 Authorization Caching and Certificate Validity

Since authorization decisions can be expensive to compute, and it might be the
case that a decision needs to be computed again in the future, caching of decision
results can be a useful tactic. Indeed, since some decisions involve subdecisions,
a number of results can be cached, or vice-versa a number of cached results
can be used, for many authorization decisions. Recall that in the example in
Sect. 6.2.6, it is determined that Mary is a member of several roles, and that
AAA is a member of H.orgs. All of these facts could be cached, and if in the
future it is necessary to determine e.g. that Mary is a member of H.preferred ,
the fact will be on hand.

Previous systems have leveraged this idea. In particular, the ConChord sys-
tem for SDSI certificate storage and name resolution [3] maintains a closure of
the certificate database, where all name bindings derivable from a certificate
are computed and cached upon certificate insertion. As a consequence, autho-
rization decisions are O(1). However, the introduction of certificate validity
measures, such as expiration dates, pose a problem for this strategy: cached
computations may depend on certificates that have expired. How to determine
that this is or is not the case, without re-computation of the authorization
decision?

The system RTR provides a solution to this problem. Imagine that autho-
rization facts discovered during checkmem computation are cached as weighted
paths B −κ−³ A.r. Let K be the set of timestamps, and define 4 as the “more
recent than” relation between timestamps. Thus, credentials can be labeled
with their expiration date. By defining ⊕ and ⊕ as operations that return the
older of their operands, any membership decision will be labeled with the expi-
ration date of the oldest certificate involved in the decision. Hence, by caching
computed authorization facts as weighted paths of the form B −κ−³ A.r in this
risk model and by defining a threshold Θ mapping every role to the current
date/time, cached facts can be reused in a manner that allow those reliant on
expired certificates to be immediately rejected.

7.2 Trust but Verify

The Trust but Verify (TbV) framework [25] provides a setting for distributed
trust management that takes into account a notion of trust for online authoriza-
tion decisions, backed up by offline verification. Many realistic authorization
decisions require “softening” of security in the online phase; this amounts to
trusting the validity of certain assertions in this phase, that would otherwise
be too expensive to verify. However, online trust should be specified so that
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sound offline verification is well-defined, providing formal certainty that offline
verification supports online trust.

Any authorization decision in the TbV framework is abstractly specified
as derivability of a target privilege priv given a security context s, written
s ` priv. Any instance of the TbV framework comprises a trust transformation,
that formalizes the definition of trust in terms of a function, mapping initial
security contexts s to contexts JsK, that contain assertions that are trusted
solely for efficient online verification. Furthermore, the trust transformation
should be reversible, via an audit technique that is required to reconstruct
a security context that is at least as strong as the pre-image s of any trust-
transformed security context JsK. The audit technique is the implementation
of offline verification. In [25], the TbV framework is developed using ABLP
logic [1]. However, the RT framework is a more modern trust management
system, with a variety of implementation techniques and variations [21]. The
RTR variation offers a unique dimension of support for TbV, since trust can be
encoded using definitions of risk in RTR.

The TbV framework is characterized by three conditions, that we recount
here. We show how RTR can be used to instantiate the framework in a system
that satisfies these conditions. The first condition requires that authorization
decisions are decidable:

Condition 7.1 Let s be an authorization context; then validity of s ` priv is
decidable.

In RTR, authorization decisions are implemented as role membership decisions
with an assessed risk, and security contexts are sets of credentials C. That
is, if the role A.r represents a target privilege and B is a privilege requester,
then authorization amounts to discovery of whether there exists κ such that
(B, κ) ∈ SΘ

C for some specified threshold Θ. We have shown that this relation
is decidable.

The second condition specifies that auditing reverses trust transformation,
though since trust transformations can be many-to-one, the context returned
by auditing need not be the exact preimage of trust transformation:

Condition 7.2 Let s be a trusted context. Then success of audit(s) implies that
Jaudit(s)K = s.

The last condition sufficiently strengthens the requirements of auditing to for-
mally establish that any auditing is a sound verification of trust injected by the
trust transformation:

Condition 7.3 Let s be a trusted context; then if audit(s) succeeds, for all priv
it is the case that audit(JsK) ` priv implies s ` priv.

The condition requires that auditing of a trust-transformed context must re-
construct a context that is at least as strong as the initial context, prior the
trust transformation. In RTR, since authorization contexts are credentials C,
and the authorization decision includes a risk threshold, trust transformations
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may be implemented via an increase in the tolerable risk thresholds in chain
discovery. Assuming the same credentials C as the example in Sect. 5.1, the
initial authorization decision could be to determine whether there exists κ
such that (Ed , κ) ∈ SΘ

C (Store.buyer), where Θ(Store.buyer) = medium and
Θ(A.r) = high for all other roles A.r. An online trust transformation could be
implemented by using the threshold Θ[Store.buyer : high], allowing Ed’s creden-

tial Acme.purchaser
high←− Ed to be used for immediate authorization. Auditing

in this case would just consist of authorization under threshold Θ. The following
Lemma is trivial and establishes that this trust transformation satisfies the last
condition enumerated above.

Lemma 7.1 Define Θ1 4 Θ2 iff Θ1(A.r) 4 Θ2(A.r) for all roles A.r. Then
SΘ1
C 4 SΘ2

C for arbitrary C.

7.3 Cost/Benefit Analysis

Risk in RTR is defined in an abstract manner. Although the examples in this
paper have used atomic risk values, it is possible to define a risk ordering on
compound risk values. For example, suppose both levels of “trustability” and
expected wait times for retrieval of specific credentials are considered compo-
nents of risk. The set K could then contain elements of the form (κ, t), where
κ ∈ {low ,medium, high} as in Sect. 5.1 and t is a wait time represented as an
integer, and:

(κ1, t1) 4 (κ2, t2) ⇐⇒ κ1 4 κ2 ∧ t1 ≤ t2

reflecting that lower wait times, as well as higher confidence in validity, define
lower risk. Maximum risk in chain discovery would then specify both a tolerable
level of trust, and a tolerable wait time for any particular credential.

This suggests an interactive procedure for chain discovery, where the costs
of raising the level of one component of risk could be balanced against benefits
in another risk dimension. In the above scenario, if chain discovery in some
instance fails given a threshold Θ such that Θ(A.r) = (κ, t) for the governing
role A.r, chain discovery could be re-run with a higher threshold, but notice
there is a choice of which element(s) of risk to raise. The cost of raising κ
can then be balanced against the benefits in the time dimension, by re-running
chain discovery with the threshold Θ[A.r : (κ′, t)] with κ 4 κ′. The opposite is
also clearly the case. This cost/benefit analysis would be further enhanced by
optimizing chain discovery. The backward chain discovery algorithm presented
in this paper ensures that risks are kept below a certain threshold, but does
not attempt to optimize risk. By extending chain discovery with optimization
techniques, in the presence of compound risk, benefit dimensions could be opti-
mized within a fixed cost dimension. For example, optimal wait times could be
sought given a high level of trust risk. Development of optimizing algorithms is
a topic for future work.
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8 Conclusion

We now conclude with comments on related work and a short summary of the
paper.

8.1 Related Work

Many trust management systems have been developed by previous authors. In
any such system resource owners write policy statements using a suitable policy
language that describes the attributes of authorized users. When a request is
made, the requesting entity provides signed credentials that prove the requester
complies with the policy. Proofs are constructed automatically, and implement
a formal semantics. Previous systems include BAN [10] and ABLP logic [1],
PolicyMaker [9], KeyNote [8], SDSI/SPKI [23], [13], and RT [20], [21], [19], to
name a few. However, our focus is not on trust management in general, but
trust management extended with risk assessment.

Proof carrying carrying authorization (PCA) [6, 5] is a framework for spec-
ifying and enforcing webpage access policies. It is based on ABLP logic, but
includes primitives for detecting timestamp expiration. While this capability
reflects some sense of risk assessment, it is not as general as the notion of risk
expressed in our system.

In [4], semantics for a number of RT variants are obtained via embedding
in constraint datalog. An implementation of “confidence levels”, similar to our
notion of risk assessment, is suggested via the use of constraints, though not
developed in detail. While it is possible that many interesting risk assessment
schemes can be defined using RT1 or RT2, we believe that defining a new RT
variant to explicitly capture the notion of risk assessments is appealing in various
respects. In particular, we are able to define risk in a general manner, and isolate
issues related to online authorization with components of risk.

In prior work, we developed preliminary foundations for the system RTR [11].
However, the current presentation has a more rigorously developed metathe-
ory and chain discovery algorithm, and a more general theory of authorization
thresholds. New applications are also presented here, in particular delegation
width and depth control, and certificate validity.

Dealing with trustworthiness in distributed systems has been an active re-
search area (see, e.g., [14]). In [18], an algebra is provided for reasoning about
trust in certificate chains. Our notion of risk is related to the notion of trust,
and some relevant operators of [18] may be directly incorporated into our frame-
work. Comparative expressiveness of risk and trust operators is an interesting
research topic, but is beyond the scope of this paper.

A framework for characterizing generalized authorization problems has been
developed for SPKI/SDSI [24] that is closely related to our risk assessment
scheme for RT. In their system, weights chosen from a collection of values with
certain algebraic properties label certificates, and certificate chains are endowed
with a weight that is a combination of the component certificate weights. How-
ever, their weighting framework is more general than ours, and is fundamentally
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based on witness sets– sets of certificate chains that establish a particular au-
thorization, rather than individual role membership decisions as in our scheme.
Also, their focus is not on algorithms that use proof direction based on risk
considerations for efficiency gains, as in our work.

8.2 Summary

In this paper we have defined RTR, a role-based trust management framework
with formal risk assessment. This system is a variation on RT [19], and in-
cludes the capability to associate credentials with risk, and to assess risk levels
of authorization as the aggregated risks of authorization components. Risks
are defined in an abstract manner, under the requirement that the set of risks
be a complete lattice, with a monotonic aggregation operator. A formal se-
mantics has been given, that associates role membership with risk levels. An
algorithm has also been defined for implementation of this semantics, providing
an automatic risk assessed authorization procedure. The algorithm is special-
ized for functionality in a distributed environment, and can be parameterized
by risk thresholds, specifying a maximum tolerable risk for authorization. The
algorithm is directed, to avoid proof paths whose aggregate risks exceed the
given threshold, hence to risk as little as possible during the course of autho-
rization. To illustrate the usefulness of the system, we have discussed a number
of applications, including delegation depth and width control, a trust-but-verify
approach to authorization, and authorization decision caching in the presence
of certificate expiration.
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A Definition of checkmem

In this appendix we describe our OCaml implementation of the checkmem al-
gorithm. As described in the text, the implementation is in a procedural style,
but exploits higher order functions and types available in OCaml.

A.1 Type Definitions

To abstract the definition of risk orderings in the implementation, we param-
eterize the implementation by a module Risk, that satisfies the following type
signature RISK.

module type RISK =
sig
type risk
val lt : risk -> risk -> bool
val plus : risk -> risk -> risk
val times : risk -> risk -> risk
val bot : risk
val top : risk

end
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Any concrete instance Risk of RISK implements the risk ordering provided
in an instance of RTR, insofar as each component of the module implements a
component of a given risk ordering, as follows.

Risk.risk: the set of risk values K.
Risk.lt: the risk ordering 4.
Risk.plus: risk aggregation ⊕.
Risk.times: intersection aggregation ⊗.
Risk.bot: the bottom element ⊥.
Risk.top: the top element >.

Roles, role expressions, credentials, risk assessments, and thresholds are then
specified as follows. Let types entity and role name be arbitrary identifiers
with equality operations, e.g. strings. We define:

type role = entity * role_name
type role_expr =

Ent of entity
| Role of role
| Link of entity * role_name * role_name
| Isect of role_expr list

type cred = Cred of role * Risk.risk * role_expr
type risk_assessment = (entity * Risk.risk) list
type threshold = role_expr -> Risk.risk

Now we specify types that are specific to the checkmem algorithm: search
risks, solution monitors, and search risk propagaters.

type search_risk = role * risk
type monitor = (entity * risk) -> unit
type propagater = (role * risk) -> unit

Nodes are specified as records identified by constant role expressions, with mu-
table fields for maintaining data structures relevant to the algorithm, and a
visited flag.

type node = {
id : role_expr;
mutable monitors : monitor list;
mutable propagaters : propagater list;
mutable search_risks : search_risk list;
mutable solution : risk_assessment;
mutable visited : bool

}
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let risk_notify nd (r,k) =

if not (subsumed (r,k) nd.search_risks)

then

begin

add_search_risks [(r,k)] nd;

apply_all nd.propagaters (r,k)

end

let make_propagater nd k’ = (fun (r,k) -> risk_notify nd (r, Risk.plus k k’))

Figure 3: Search Risk Propagation Functions

A.2 Auxiliary Functions and Data Structures

The checkmem algorithm uses two global mutable data structures, identified by
global variables in our implementation:

q: global queue data structure for storing nodes to be searched.
nodes: global list of all nodes created during the course of authorization.

The checkmem algorithm uses a library of auxiliary functions whose seman-
tics we describe below. The definitions are not particularly relevant and are
omitted for brevity, but we describe their argument lists and semantics as fol-
lows. Recall that in OCaml, argument lists can be written in a “curried” style,
e.g. f x y instead of f(x,y).

make target a r: sets membership checking of entity a in role r as main
target of the authorization decision.
issuer retrieve r: retrieves all certificates in C for which r is the issuer.
add monitor m nd: adds a solution monitor m to nd.monitors.
add propagater p nd: adds a search risk propagater p to nd.propagaters.
add search risks risks nd: adds risks to nd.search risks.
add new solution (b,k) nd: given solution element (b,k) that is not sub-

sumed by nd.solutions, returns canonical union of {(b,k)} and nd.solutions.
apply all fs x: apply all functions in the list fs to x.
apply to all f l: apply f to all elements of list l.
aggregate all rs k: transforms search risks or assessment rs so that every

element (x,k’) becomes (x,Risk.plus k’ k)

subsumed (x,k) risks: a predicate that holds iff there exists (x,k’) in
risks such that Risk.lt k’ k.
produce node f: if nodes contains a node nd identified by f, returns nd,

otherwise returns an initialized node identified by f, and adds it to nodes.
enqueue unvisited nd: adds nd to q and sets the flag nd.visited to true if

nd.visited is false, otherwise a noop.

39



let soln_notify nd (b,k) thresh =

if (Risk.lt k (thresh nd.id)) && not (subsumed (b,k) nd.solution)

then

begin

add_new_solution (b,k) nd;

apply_all nd.monitors (b,k)

end

let make_nmonitor nd k thresh =

(fun (b,k’) -> soln_notify nd (b, Risk.plus k k’) thresh)

let make_lmonitor nd thresh =

match nd.id with

Link(a,r1,r2) ->

(fun (b,k) ->

let m = make_nmonitor nd k thresh in

let nd’ = produce_node (Role(b,r2)) in

begin

apply_to_all m nd’.solution;

add_monitor m nd’;

add_search_risks (aggregate_all nd.search_risks k) nd’;

add_propagater (make_propagater nd’ k) nd;

enqueue_unvisited nd’;

end

)

| _ -> raise BadNode

Figure 4: Solution Monitor Functions

below thresh thresh risks: a predicate that holds iff search risks risks are
below threshold thresh (Definition 6.5).
searchable thresh q: a predicate that holds iff queue q contains at least one

node whose search risks are below threshold thresh.
getnext thresh q: gets the next searchable node from queue q.

A.3 Propagaters and Role Monitors

To propagate search risks along search paths, we define functions for notifying
nodes of new risks, and for making propagaters for a given node and risk. These
functions are defined in Fig. 3.

risk notify nd (r,k): notifies the node nd to add a new search risk (r,k),
and applies all of nd.propagaters to (r,k).
make propagater nd k’: returns search risk propagater for node nd and risk

k’.

To propagate solutions along solution paths, we define functions to notify
nodes of solutions, and functions to generate solution monitors. Note that node,
linking, and intersection monitors are not defined explicitly, but are returned
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let process_cred nd thresh (Cred(_,k,f)) =

let m = make_nmonitor nd k thresh in

let nd’ = produce_node f in

begin

apply_to_all m nd’.solution;

add_monitor m nd’;

apply_to_all (risk_notify nd’) (aggregate_all nd.search_risks k);

add_propagater (make_propagater nd’ k) nd;

enqueue_unvisited nd’

end

let process_isect nd m nd’ =

begin

add_monitor m nd’;

add_search_risks nd.search_risks nd’;

add_propagater (make_propagater nd’ Risk.bot) nd;

enqueue_unvisited nd’

end

let rec checkmem b r thresh =

begin

Queue.clear q;

nodes := [];

make_target b r;

enqueue_unvisited (produce_node (Role r));

while (searchable thresh q) do

let nd = getnext thresh q in

match nd.id with

Ent(a) -> soln_notify nd (a, Risk.bot) thresh

| Role(r) ->

begin

add_search_risks [(r,Risk.bot)] nd;

apply_to_all (process_cred nd thresh) (issuer_retrieve r)

end

| Link(a,r1,r2) ->

let nd’ = produce_node (Role(a,r1)) in

let m = make_lmonitor nd thresh in

begin

apply_to_all m nd’.solution;

add_monitor m nd’;

add_search_risks nd.search_risks nd’;

add_propagater (make_propagater nd’ Risk.bot) nd;

enqueue_unvisited nd’

end

| Isect(fs) ->

let m = make_imonitor nd thresh in

let nds = List.map produce_node fs in

apply_to_all (process_isect nd m) nds

done

end

Figure 5: Node Processing (checkmem) Function Definitions
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by higher order functions for making them. All of these functions are defined
in Fig. 4 except for make imonitor which is omitted for brevity.

soln notify nd (b,k) thresh: notifies node nd to add a new solution ele-
ment (b,k), and applies all of nd.monitors to (b,k). Raises a Solved ex-
ception if membership of b in nd.id is the target of authorization as set by
make target.
make nmonitor nd k thresh: returns a node monitor for node nd and risk k.
make lmonitor nd thresh: returns a linking monitor for node nd.
make imonitor nd thresh: returns an intersection monitor for node nd.

A.4 Node Processing

Putting all the pieces together, we can now define the checkmem function that
implements node processing. To make the code more readable, we have factored
out some blocks as auxiliary functions. These functions are defined in Fig. 5.
The invocation of make target sets the goal of the authorization decision; if it
is discovered before the queue is empty, an exception is raised and computation
is aborted.

process cred nd thresh c: does all the work for processing a credential c
that defines a role identifying nd in the role case of checkmem.
process isect nd m nd’: given nd identified by an intersection role, does

most of the work of processing a node nd’ identified by a component of the
intersection.
checkmem b r thresh: implementation of the checkmem algorithm.
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