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Abstract—In this paper we describe SpartanRPC, a secure
middleware technology for wireless sensor network (WSN)
applications supporting cooperation between distinct protection
domains. The SpartanRPC system extends the nesC program-
ming language to provide a link-layer remote procedure call
(RPC) mechanism, along with an extension of nesC config-
uration wirings that allow specification of remote, dynamic
endpoints. SpartanRPC also incorporates a capability-based
security architecture for protection of RPC resources in a
heterogeneous trust environment, via language-level policy
specification and enforcement. We discuss an implementation
of SpartanRPC based on program transformation and AES
cryptography, and present empirical performance results.

Keywords-remote procedure call, capability-based security,
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I. INTRODUCTION

As WSN technology becomes more ubiquitous applica-
tions of overlapping yet independently controlled sensor
networks will begin to appear. Networks from cooperating
but distinct security domains may wish to use each other’s
nodes to increase the resolution, spacial coverage, or lifespan
of certain sensing or control functions. For example, assume
that two distinct networks are deployed to the same space
such that nodes from both networks can communicate with
each other. While the primary purpose of the two networks
might be independent, their administrators might neverthe-
less agree to collaborate on certain supporting functionality
such as data collection and analysis.

Although in some cases data collected by each security
domain could be shared off-network, perhaps via Internet
connected gateways, certain advantages could be gained
by enabling in-network interactions. For example if one
network is partitioned due to a failed node, the separated
partitions might be able to continue communicating by
routing their messages over a cooperating network’s nodes.

In situations where low latency is important, such as with
time synchronization protocols [1], in-network interactions
between independent, cooperating WSNs would be more
effective than attempting to synchronize two networks via
long distance Internet links. Tracking applications [2] could
also benefit from in-network interactions between coop-
erating networks. Handing off tracking information from
one network to another via an Internet link would require
activating a potentially large number of nodes in each

network in order to send information to their respective
gateways. This creates power consumption concerns. Other
potential applications where in-network interactions could
play a role include secure routing protocols in heterogeneous
trust environments [3], transport and network layer protocols
[4], and even mote-based web servers supporting secure
channels [5].

High level applications can also benefit from in-network
interactions between cooperating WSNs. For example, the
use of WSNs to facilitate emergency care in disaster situa-
tions has been described [6], [7]. While this previous work
has focused on WSNs in a single security domain, it is
likely that multiple domains would be in use during many
emergencies as first responders from different organizations
or different political jurisdictions work together. In those
cases it is not realistic to assume that each domain would
have Internet connectivity; the disaster site might be too
remote or the supporting network infrastructure might be
non-functional. Direct interaction between the WSNs of
cooperating domains becomes an effective way for them to
share information.

In this paper we describe novel middleware technology to
support WSN applications in this setting. Our system, which
we call SpartanRPC, provides a new form of link-layer RPC
as a natural extension of the nesC programming model,
and language based authorization based on symmetric-key
cryptography. As other authors have observed [8], RPC is an
appropriate abstraction for node services on the network and
supports whole-network (vs. node-specific) programming.
We further observe that RPC allows nodes to provide flexi-
ble, modular services without the need for reprogramming,
a kind of “micro web services.” Secure RPC is also clearly
desirable in a heterogeneous trust environment.

A. Overview and Contributions

Previous related work illustrates interest in and useful
applications of RPC in a WSN context. For example, the
Marionette system uses network layer RPC for remote (PC-
based) analysis and debugging of WSNs [9]. The Fleck
operating system provides a small pre-defined set of RPC
services for WSN applications, while the secFleck system
extends this with a form a secure RPC [10]. SpartanRPC
differs from these systems in that it extends the nesC pro-



gramming language to allow programmer definition (unlike
secFleck) of secure RPC services that can be accessed by
nodes within the network itself (unlike Marionette). Our
system is similar to and inspired by TinyRPC [8], except the
latter does not provide security and has a different semantics
that is not as expressive and flexible as our approach.

Major contributions of our work include an RPC design
that is consistent with existing nesC semantics, including an
asynchronous “task-like” conception of RPC and dynamic
wires as a natural extension of configuration wirings to
allow flexibility in remote communication. We also provide
a mechanism for fine-grained RPC authorization. Finally we
created an implementation of SpartanRPC [11] from which
we obtained empirical results showing that SpartanRPC
features are not onerous in terms of additional space and
energy consumption.

A primary goal of the SpartanRPC design is to provide
RPC capabilities as transparently as possible. This means
at least that the low-level communication details should
be hidden from the user. Beyond that, it means that RPC
features should be provided in a manner that fits in with
existing nesC semantics.

Asynchronous Execution Model: In nesC a command
is a synchronous unit of control; when one is called, it
is pushed onto the call stack and the current continuation
waits for the command to complete and yield a result. In
contrast, when a task is posted it is placed in a queue
for execution at some future time, and the calling context
continues immediately. We propose a task-like mechanism
for RPC invocation, that allows remote postings; in this
our approach differs from TinyRPC that envisioned RPC
as a form of command [8]. However, our mechanism differs
from tasks in two important ways: first, we allow arguments
to be passed in RPC calls, and second, the module that
posts an ordinary task must define it, whereas we want to
allow modules to execute functionality defined non-locally.
We therefore introduce the duty mechanism. Duties may be
posted like a task, but passed arguments and provided by
modules for posting by other (possibly non-local) modules.
Duties are discussed in Sect. II.

Dynamic Wires: The SpartanRPC design provides a
minimalist extension of configuration wiring syntax with
abstractions for remote communication. In our system com-
ponents can provide remotable interfaces, and in configu-
ration definitions these interfaces can be wired to locally
or non-locally. However, wirings to remote interfaces must
specify the host of the wired-to component, and our syntax
requires the user to provide an inherently dynamic definition
of endpoint hosts to allow fan-out wirings that can change
at run-time. Since SpartanRPC works at the link layer, we
believe this flexibility is fundamental in a general WSN
setting where neighborhoods can be expected to change
frequently due to node repositioning, failure, or changes in
radio signal strengths. Dynamic wires are discussed more in

Sect. III.
Fine-Grained Authorization Policies: Research on

WSN security has addressed secure routing [3], link layer
security [12], cryptography [13] and key distribution [14],
and hardware issues [15]. This previous work has established
a strong low-level foundation for security in WSNs. We be-
lieve that secure link-layer RPC is an appealing middleware
solution in WSNs because it allows programmatic specifi-
cation of previously ad-hoc network-level behavior, while
imposing relatively small syntactic and efficiency overhead.
SpartanRPC also allows multiple symmetric keys to be used
to protect multiple security domains within a network in
a simple and usable manner. Our security mechanism is
discussed in more detail in Sect. IV.

II. DUTIES AND REMOTABILITY

Because of the slow, unreliable nature of wireless com-
munications we believe it is unrealistic for RPC services
in WSNs to be synchronous. Instead we believe that the
semantics of tasks are closer to being a correct abstraction.
They are not quite right however, as RPC services will typi-
cally require arguments to be passed, and while the poster of
a task defines it, an RPC service invokes remotely defined
functionality. We therefore define a new RPC abstraction
called a duty.

A. Syntax and Semantics

Duties are declared in interfaces and syntactically resem-
ble command declarations. Instead of using the reserved
word command the new reserved word duty is used. Duties
are allowed to take parameters (with restrictions as discussed
below) but must return the type void. For example the
following interface describes an RPC service for remotely
flashing a mote LED:

interface LEDControl {
duty void setLeds(uint8_t ctl);

}

Duties are defined in modules in a manner similar to the
way tasks, commands, or events are defined. The reserved
word duty is again used on the definition. Like commands
and events the name of the duty is qualified by the name of
the interface in which it is declared. Including a duty in an
interface definition automatically implies that the interface
can be remotely invoked, or is remotable in the sense
formalized in Sect. II-B. Any remotable interface provided
by a component must be specified as remote in its provides
specification, for example:

module LEDControllerC {
provides remote interface LEDControl;

}
implementation {

duty void LEDControl.setLeds(uint8_t ctl)
{ ... }

}



A module on the client node that wishes to use a re-
motable interface simply posts the duty in the same manner
as tasks are posted. The use of post emphasizes the
asynchronous nature of the invocation.

module LoggerC {
uses interface LEDControl;

}
implementation {

...
post LEDControl.setLeds(42);

}

Note that the standard component semantics of nesC
provide here a natural abstraction of “where” the RPC call
goes, just as e.g. a normal command invocation will go
through a component interface that is disconnected from
its implementation. Like a normal command invocation,
configuration wirings determine where duty control flows.
However, in SpartanRPC duty invocation control may flow
to a component residing on a different network node. The
invoking module must be connected to the remote modules
by way of a dynamic wire as described in Sect. III.

When a duty is posted by a client node it may run at
some time in the future on the server node. The client node
continues at once without waiting for the duty to start,
i.e. duty postings are asynchronous in the same manner
that tasks are. Once posted the client has no direct way to
determine the status of the duty. Also, due to the unreliability
of the network a posted duty may not run at all.

It is possible for a duty to be posted multiple times by a
client or by multiple clients. Because duties are implemented
as nesC tasks as discussed in Sect. VI, any posts of a
particular duty received by a node while a previous post
of that duty is pending are lost. However, this does not
introduce any new problems because duty execution is not
guaranteed in any case.

B. Remotable Interfaces

We impose certain requirements on RPC service defini-
tions for ease of implementation. First, since WSN nodes do
not share state we disallow passing references to duties—
such a reference would be meaningless on the receiving
node. Thus we define remotable types:

Definition 2.1: A type is remotable iff it satisfies the
following inductive definition: The nesC built-in arithmetic
types, including enumeration types, are remotable, and ar-
rays of remotable types and structures containing remotable
types are remotable.
Since a remotable interface describes RPC services, we
require that they specify duties taking only arguments of
remotable type; also, remotable interfaces can only contain
duties, to ensure meaningful remote usage.

Definition 2.2: An interface is remotable iff it only pro-
vides duties whose argument types are remotable.

typedef struct {
uint16_t node_id;
uint8_t local_id;

} component_id;

typedef struct {
int count;
component_id *ids;

} component_set;

interface ComponentManager {
command component_set elements();

}

Figure 1. Component Manager Interface and Type Definitions

III. DYNAMIC WIRES

In an ordinary nesC program the “wiring” between com-
ponents as defined by configurations is entirely static. The
nesC compiler arranges for all connections and at run time
the code invoked by each called command or signaled event
is predetermined.

In a remote procedure call system for wireless networks,
this static arrangement is insufficient. A node can not, in
general, know its neighbors at compilation time but rather
must discover this information after deployment. In addition,
the volatility of wireless links, and of the nodes themselves,
means that a given node’s set of neighbors will change over
time. In this section we discuss the facility in SpartanRPC to
allow dynamic wirings for control flow from duty invocation
via remotable interfaces to duty implementation, wherein the
programmer has control over wiring endpoints and how they
may change during program execution.

A. Component IDs, Component Managers

We begin by discussing how remote components are iden-
tified for wiring. In order to uniquely identify components on
the network, remotable components are specified via a two-
element structure called a component_id defined in Fig. 1.
The node_id member is the same node ID used by TinyOS
and is set when the node is programmed during deployment.
The local ID member is an arbitrary value defined by the
programmer of the server node. Only components that are
visible remotely need to have ID values assigned, however,
the ID values must be unique on the node.

A component manager is a component that provides the
ComponentManager interface defined in Fig. 1. It dynami-
cally specifies a set of component IDs that ultimately serve
as dynamic wiring endpoints.

As a simple example, consider the component manager
RemoteSelectorC as shown below:

module RemoteSelectorC {
provides interface ComponentManager;

}
implementation {



component_id broadcast = {0xFFFF, 1};
component_set remote_set = {1, &broadcast};

command component_set
ComponentManager.elements() {

return result;
}

}

This component manager always returns a component
set containing a single component. The special Spartan-
RPC broadcast node ID is used (0xFFFF) indicating that
all neighbors should be the target of the dynamic wire.
The component ID on the neighbors is specified as 1 in
this example. In a more complex example the component
manager would compute the component set each time the
dynamic wire is used, filling in an array of component IDs
based on information gathered earlier in the node’s lifetime.

B. Syntax and Semantics

In SpartanRPC we extend the syntax and semantics of
nesC to allow the target of a connection to be dynamically
specified by a component manager. The syntax of wirings,
or connections, is extended as follows:

connection ::=
endpoint ’->’ dynamic_endpoint

dynamic_endpoint ::=
’[’ IDENTIFIER ’]’ (’.’ IDENTIFIER)*

Given a dynamic wiring of the form C.I -> [RC].I,
we informally summarize its semantics as follows. First, we
statically require that RC is a component manager, and that
I is remotable. At run time, if control flows across this
wire via posting of some duty I.d within C, the method
elements in RC is invoked to obtain a set of component
IDs. The duties I.d provided by those remote components
will then be posted on the host machines via an underlying
remote communication, the details of which are hidden from
the SpartanRPC programmer. Note that since this call to
elements may return more than one component ID, this is
a sort of fan-out wiring.

For example, consider a simple service that allows client
nodes to turn on or off three LEDs on the server node.
A client that wishes to use such a service could indicate
its connection with one or more server nodes using a
configuration such as:

ClientC.LEDControl ->
[RemoteSelectorC].LEDControl;

On the server the component that provides the LED
controlling service must indicate that it is to be provided
remotely as shown in Sect. II-A. The server’s configuration
does not need to connect anything to the remote interface
explicitly.

C. Callbacks and First-Class IDs

We assume that the local component IDs for well known
services will be agreed upon ahead of time by a social
process outside of our system. By broadcasting to a well
known local component ID, a node can use services on
neighboring nodes without necessarily knowing their node
IDs.

If a node expects a reply from a service that it invokes, the
calling node must set up a component with a suitable remote
interface to receive the service’s result. In SpartanRPC
remote invocations can only transmit information in one
direction. Bidirectional data flow requires separate dynamic
wires. In this case the service would normally require the
client to provide its component ID as an argument to the
service invocation. The server could store that value for use
by a server-side component manager.

For example, assume that the LED controller on the
server returns the old state of the LEDs whenever the LED
value is changed. The server configuration would include an
appropriate dynamic wire as follows

LEDControllerC.LEDResult ->
[LEDControllerC].LEDResult;

The client must provide the LEDResult interface remotely
to receive this result. In this example the LEDControllerC

component is its own component manager. This makes it
easy for the elements command to access global data that
was recorded inside LEDControllerC when the service
it provides was previously invoked. This is a common
SpartanRPC idiom.

IV. SECURING RPC

Our primary goal is to provide convenient security primi-
tives that application programmers can use when developing
heterogeneous wireless sensor networks. The RPC services
presented in the preceding sections provide an abstraction
for building network services. Now, we focus on a means
to protect these services via a language-based authorization
mechanism. This mechanism is a simple capability-based
authorization system, that is sufficiently high-level to hide
the underlying message authentication scheme, while being
sufficiently low-level to serve as a basis for more complex
protocols in applications.

A. Capability-Based Security

A capability is an unforgeable reference to a resource,
the possession of which is necessary to gain resource access
[16]. In SpartanRPC resources are taken to be RPC services,
and programmers may specify security policies associated
with these services by requiring the activation of a capability
for their usage. We envision that individual capabilities will
be associated with statically assigned roles.



B. Syntax and Semantics

To declare security policy, an RPC service provider can
modify a remote interface provides declaration with the
syntax requires C where C is a string literal denoting
a capability. For example:

module LEDControllerC {
provides remote interface LEDControl

requires "K";
}

This means that posting of any duty in LEDControl pro-
vided by this component requires activation of capability
K. All capability requirements are declared statically in this
manner, and all capabilities are given statically, i.e. Spartan-
RPC does not support dynamic capability generation. This is
reasonable because capabilities are associated with network
services. Thus the number of needed capabilities scales with
the number of interacting security domains and not with the
total number of nodes.

In order to use a secured service, clients may activate
a capability C when wiring to a protected component
interface via the syntax auth C. For example, assuming that
RemoteSelectorC is a component manager for provider(s)
of the protected LEDControl service described above:

auth "K" ClientC.LEDControl ->
[RemoteSelectorC].LEDControl;

Any postings of duties from LEDControl in the ClientC

component need not mention security at all—capabilities are
activated at configuration wiring connections since that is
where interface uses are reified with implementations.

C. Security Properties

The implementation of our security mechanism is de-
scribed in more detail in Sect. VI, but a summary is as
follows. Capabilities are in one-to-one correspondence with
AES symmetric keys. Activating a capability C at a wiring
connection entails signing all messages associated with duty
postings over that wire with a MAC using the key denoted
by C. Any service provider will verify these MACs under
the key denoted by the capability C required for the service.
Since capabilities are known statically, we assume that keys
are stored in ROM, so that a node’s capabilities are exactly
the keys it is deployed with.

Our system does not provide any form of replay protection
out of the box, but this can be added at the application
level. For example an application could pass a counter as an
additional duty parameter. The server could verify that the
count increases monotonically as a simple form of replay
protection.

We feel that delegating replay protection to the application
is appropriate since SpartanRPC is intended to be a low level
infrastructure on which more complex systems can be built.
Not all applications will need replay protection and it is our
desire to keep the core overhead minimal.

In addition our system does not currently offer any
confidentiality service. However, extending our system to
encrypt duty arguments is an area we intend to explore as
future work.

V. EXAMPLE

To illustrate the usefulness of our design we implemented
a skeleton program that uses directed diffusion to gather
temperature events in a heterogeneous network. The directed
diffusion algorithm requires that nodes communicate with
a dynamically changing subset of neighbors. The dynamic
wire mechanism of our system makes it straightforward for
a component manager to compute the subset of neighbors
currently needed in each communication. Who receives a
communication is computed independently from what is
communicated.

In addition, the algorithm requires the use of two distinct
communication pathways. Nodes interested in receiving data
communicate their interest forward over the network toward
sensors. Nodes that observe the data communicate results
backward toward the interested nodes. In our example we
choose to protect these pathways with multiple capabilities.

A. Directed Diffusion in Multiple Domains
The directed diffusion algorithm [17] is an approach for

diffusing data across a wireless sensor network. The algo-
rithm allows a node to express an interest in data of a certain
kind. In our example interests are expressed as temperature
thresholds. Any node that observes a temperature greater
than the threshold is requested to report that data back
to the interested node. A certain data rate, expressed as a
time interval between transmissions, is associated with each
interest. Initially a node seeking temperature data floods
the network using an interest with a low data rate. As
data events find their way back to the interested node, that
node selectively reinforces certain immediate neighbors by
retransmitting the interest with a higher associated data rate
to just those neighbors.

Each node maintains a cache of active interests. When a
node observes or receives a data event it sends the data to all
immediate neighbors that have expressed direct or indirect
interest in it. Since not every neighbor is interested in all
data, only a subset of neighbors are involved in each data
transmission.

Each node also maintains a cache of data events that have
been recently seen. This cache is used, in part, to measure the
actual rate at which data is received from various neighbors.
This information is made available to the reinforcement
algorithm so that an appropriate decision can be made as
to which nodes might be suitable to reinforce.

B. Interfaces
Interest and data event propagation are handled by sepa-

rate interfaces, as shown in Fig. 2, each containing a single
duty.



interface InterestManagement {
duty void set_interest(

uint16_t sender_node_id,
int temp_threshold,
int interval,
int duration);

}

interface DataManagement {
duty void set_data(

uint16_t sender_node_id,
uint16_t originator_node_id,
int temp_value)

}

Figure 2. Directed Diffusion Interfaces

A node expresses interest in temperature data above a
certain threshold and at a certain data rate by posting the
set_interest duty on its neighboring nodes. Similarly a
node passes data to its interested neighbors by posting the
set_data duty.

C. Configuration

The interest and data caches, which we call “managers,”
are the two central components of our application. The inter-
est manager provides the InterestManagement interface
remotely and uses the same interface on other components.
The data manager provides and uses the DataManagement

interface in a similar way. Both components serve as their
own component managers, using internal information to
specify the destination nodes of each outgoing post oper-
ation.

In our example interest propagation is be controlled
by two capabilities. The shared ext_interest capabil-
ity allows a node from any protection domain to request
a low data rate from nodes in any other domain. The
int_interest capability is defined internally and indepen-
dently by each protection domain, and allows a node in the
same domain to request a high data rate.

The main configuration contains, in part, the following
wiring for the interest manager:

auth "ext_interest"
InterestManagerC.NeighborSensors ->

[InterestManagerC].InterestManagement;
auth "int_interest"
InterestManagerC.NeighborSensors ->

[InterestManagerC].InteresttManagement;

Because the interest manager provides and uses the same
interface, it defines NeighborSensors as an alias for
the InterestManagement interface that it uses remotely.
When the interest manager posts the set_interest duty,
that duty is invoked in all neighbors currently selected by its
own, internal component manager. These post operations are
authorized using both interest capabilities; neighbors can be
in multiple protection domains. In this example no attempt

is made to track which neighbors are in which domains. As
a result two messages are sent to each neighbor selected by
the interest manager, but this could be improved by using
separate component managers for the internal and external
domains.

D. Interest Management
The interest manager has a partial specification as follows:

module InterestManagerC {
provides interface ComponentManager;
provides remote interface

InterestManagement as ExtManagement
requires "ext_interest";

provides remote interface
InterestManagement as IntManagement

requires "int_interest";
uses interface InterestManagement

as NeighborSensors;
}

The set_interest duty is provided for both internal and
external post operations. The implementation is essentially
the same. However, the duty used by other protection
domains ignores requests for data rates that are too high.

Because the interest manager is its own component man-
ager, setting up target node addresses entails updating an
internal component_set variable as appropriate. In the case
when a new interest is received the interest manager prop-
agates that interest to all neighbors. This is done inside the
interest manager’s set_interest duty with the following
code:
remote_set.ids = &remote_components;
remote_set.count = 1;
remote_components[0].node_id = 0xFFFF;
remote_components[0].local_id = INTEREST_ID;
post NeighborSensors.set_interest( ... );

The “well known” local ID of the interest manager is
used to specify which component on the neighbor nodes is
to process the duty. The implementation of the elements

command in the ComponentManager interface merely re-
turns remote_set computed above. Before the posting of
set_interest returns, remote_set is used to prepare the
outgoing packet. After the post is complete remote_set

and remote_components can be reused without affecting
any pending radio transmissions.

In the more complicated case where an interest is being
reinforced, the interest manager must use information in the
data cache to compute which neighbors need reinforcing.
Although SpartanRPC allows a component manager to dy-
namically select neighbor nodes, the component used as a
component manager is statically bound. Thus in this example
the interest manager can not switch its component manager
to, for example, the data manager. To work around this, the
interest manager communicates with the data manager using
connections not shown here. With the data manager’s help
the interest manager computes appropriate neighbors dynam-
ically before posting set_interest on those neighbors.



E. Data Management
The data manager has a dual structure where the imple-

mentation of the set_data duty simply adds the data event
to the data cache, and the implementation of a timer fired
event performs the task of propagating data to interested
nodes. The data manager manipulates the timer frequency
to match the highest required data rate. However since not
all data needs to be sent to all neighbors at such a high rate,
only a dynamically changing subset of neighbors is selected
for each timer event. This is done by adjusting an internal
component_set before posting the set_data duty.

We further assume that nodes will only want to accept
data events from authorized producers. All legitimate posts
of set_data must be done using the data capability. The
main configuration thus also contains dynamic wires such
as:
auth "data"
DataManagerC.NeighborSensors ->

[DataManagerC].DataManagement;

The specification of the data manager is, in part:
module DataManagerC {

provides interface ComponentManager;
provides interface DataManagement

requires "data";
uses interface DataManagement

as NeighborSensors;
}

Notice that there are no security related artifacts in the body
of the data manager’s implementation.

VI. IMPLEMENTATION

In this section we describe our implementation of Spartan-
RPC. We have created a program we call Sprocket [11] that
accepts a SpartanRPC enabled nesC program and outputs an
ordinary nesC program.

We focus here on describing the highlights of the im-
plementation. In Sprocket, a duty posting is converted into
a remote message send, containing an identifier associated
with the posted duty so the receiver may dispatch the
intended functionality. The RPC service provider runs a
skeleton of any remotable interface, that receives these
messages, interprets identifiers, and dispatches functionality
appropriately. Dynamic wirings in RPC client programs are
converted to statically wired stubs. When a duty posting is
converted into a message send by Sprocket, the component
IDs in the dynamic wiring endpoints are integrated into the
message. To support security features, duty messages may
also contain a MAC computed with an AES key associated
with a particular capability; authentication of this MAC
underlies SpartanRPC authorization.

A. Identifiers
A SpartanRPC identifier is a 4-tuple (N,C, I,D). Here,

N is the TinyOS ID of the node on which the duty is imple-
mented; we assume that these are network-level unique. C is

n
8 bit 8 bit 8 bit Arguments MAC

32 bit (optional)

Component ID
Node ID

Duty ID
Interface ID n Components

Figure 3. SpartanRPC data packet format.

a component ID assigned to each component that provides a
remotable interface; component IDs are node-level unique. I
is an interface ID, required since a component may provide
more than one remotable interface, even multiple instances
of the same interface. Finally, D is a duty ID, which must
be interface-level unique.

In the current version of Sprocket, IDs are assigned
statically by an arbitrary (automated and/or social) process,
and we assume that Sprocket configuration files that define
the association between IDs and the entities to which they
refer are known to all interacting actors. More sophisticated
techniques for defining and communicating RPC interface
definitions between actors is an interesting topic for future
work.

B. Data Packet Format

SpartanRPC packets contain a header with addressing
information and marshalled duty arguments. The total size
of a SpartanRPC data packet is limited to 16 bytes in the
current version of Sprocket. (or 20 bytes when authentication
is used). Fig. 3 shows the packet format.

The SpartanRPC packet header can introduce significant
overhead in some cases. In the current version of Sprocket,
I and D are packed as two four bit fields in a single byte.
Each intended destination is identified by a byte for N and
a byte for C. Finally an additional byte is used to encode
the header’s size. This yields a total overhead of 2 + 2n
bytes where n is the number of components intended to
receive the packet. A special node ID of 0xFF is used to
represent a SpartanRPC level broadcast. Thus in the special
(and common) case where all neighbor nodes are to process
the remote call the overhead is exactly four bytes, leaving 12
bytes for duty parameters. If a parameterless duty is called,
the maximum fan out supported by our implementation is
seven.

The limited field sizes used in the header put static
restrictions on the system. Only 16 remote interfaces per
component can be used with at most 16 duties per inter-
face. In addition, the current version of Sprocket limits the
network to at most 255 nodes with 256 remotely accessible
components per node.



C. Skeleton Generation

For each remote interface provided, Sprocket converts the
duties in the component providing that interface into nesC
commands. Sprocket also generates a skeleton component
for every remote interface implementation. These skeletons
are connected to the active message components in the
TinyOS library. Each time a duty message is received the
skeleton checks the packet for applicability. If the packet
is not intended for the (N,C, I) triple supported by the
skeleton or if D is out of bounds for the interface, the packet
is ignored. In the interest of minimizing radio traffic, no error
indication is returned.

If the packet is applicable, the skeleton unmarshalls the
message, stores the duty arguments in skeleton-local vari-
ables, and posts a task that implements the duty. For each
duty in the provided interface, Sprocket generates a trivial
task in the skeleton that simply calls the converted duty. For
example:

// ’value’ written when packet unmarshalled.
uint8_t value;
task void setLeds()

{ call Blink.setLeds(value); }

Thus the task-like semantics of duties are ultimately
implemented in terms of ordinary nesC tasks.

D. Stub Generation

On the RPC client side, Sprocket converts each duty
posting into a command in a stub component generated by
Sprocket. That command first calls the elements command
in the component manager to obtain the list of target
components. It then prepares a SpartanRPC data packet by
marshalling the duty arguments. Finally it broadcasts the
packet to all neighboring nodes using the TinyOS active
message library. Recipients discern packets intended for
them via packet identifiers as described above.

Sprocket converts dynamic wires into static wiring that
connects the posting component to the generated stub. The
stub is connected to the component manager associated with
the dynamic wiring. For example, a dynamic wire such as:

ClientC.LEDControl ->
[RemoteSelectorC].LEDControl;

is converted converted into the configuration as follows:

components Spkt__1;
ClientC.LEDControl -> Spkt__1;
Spkt__1.ComponentManager -> RemoteSelectorC;
Spkt__1.Packet -> AMSenderC;
Spkt__1.AMPacket -> AMSenderC;
Spkt__1.AMControl -> ActiveMessageC;
Spkt__1.AMSend -> AMSenderC;

The Spkt__1 component is the Sprocket generated stub.

E. Security

When capability-based security is used, Sprocket consults
a configuration file that maps capabilities to keys. To activate

a capability over a dynamic wire, the Sprocket generated
stub computes a MAC that covers the SpartanRPC header
and marshalled duty arguments. In the current implemen-
tation this MAC is computed using the AES encryption
algorithm in CBC mode with an initialization vector of zero.
Because SpartanRPC packets are currently limited to 16
bytes, only a single AES encryption is necessary to compute
the MAC. The first four bytes of the resulting cipher text
is used as the MAC value. While a MAC of only 32 bits
would not normally be considered secure, wireless sensor
networks generate data so slowly that attacking even such
a short MAC is not considered feasible [12], [18]. Our
MAC computation is simplistic, but we feel it is adequate
to demonstrate a proof of concept.

For components providing a secure remote interface,
the generated skeleton incorporates a MAC authentication
procedure under the required key as declared in the com-
ponent specification. The usual checks of interface ID and
component ID are done first so as to avoid a costly MAC
computation in the case where the received packet is not
actually intended for the skeleton. Only when the other
applicability checks succeed is the MAC checked. The duty
invocation is ignored if the MAC check fails.

VII. EMPIRICAL RESULTS

The sensor nodes that are the target of our system are
highly constrained devices with limited memory, CPU re-
sources, and electrical power. Conserving the resources of
the platform is a matter of high importance. Our system
consumes additional resources because of the overhead
needed to manage remote procedure calls and cryptographic
operations.

A. Test Programs

To explore the performance of our system we conducted
several experiments. Our test devices were two Tmote Sky
wireless sensor nodes [19]. These devices are based on the
Texas Instruments MSP430F1611 microcontroller [20] with
48 KiB of flash ROM, 10 KiB of static RAM, and running
at a clock frequency of 8 MHz. For wireless communication
each node uses a 2.4 GHz IEEE 802.15.4 Chipcon CC2420
[21] low power transceiver. The system software we used
was TinyOS version 2.1.0 [22].

The client node executed a program that periodically
invoked a service on the server node, passing that service
an eight bit value. The server used the least significant
three bits of that value to control the LEDs on the server
mote. Several pairs of test programs were written that all
performed the same essential function but in progressively
more abstract ways. The “baseline” programs did not use
any of our extensions. All radio handling was done explicitly
and no cryptography was used. The “duties” programs used
dynamic wires and duties for RPC support. The “security”



Table I
MEMORY CONSUMPTION OF TEST PROGRAMS.

ROM RAM
Bytes % Bytes %

Baseline Client 13096 — 378 —
Baseline Server 12576 — 306 —

Duties Client 13568 3.6 398 5.3
Duties Server 12624 0.4 308 0.6

Security Client 22662 73 608 61
Security Server 21978 75 534 74

programs added the authorization support and exercised the
full functionality of our system.

In a realistic context the average energy consumption of
the radio can often be reduced by using low power listening
[23]. In this mode the receiver runs with the radio off for
significant periods of time, waking the radio up periodically
to see if any remote devices are transmitting on the channel.
In addition the transmitter broadcasts for a certain amount
of extra time to ensure that its transmission will properly
overlap with at least one receiver cycle. We used this mode
in our test programs. As a result the extra transmission and
reception energy required for each data packet completely
overshadowed overhead due to the SpartanRPC extensions.

Since our system hides the radio handling from the
application, the use of low power listening becomes an issue
for Sprocket to handle. Our implementation assumes that low
power listening will be used in all cases and writes the stubs
and skeletons accordingly. Sprocket currently uses a radio
sleep interval of 10 ms with a 50% duty cycle. When not
actively transmitting Sprocket turns the transmitter radio off.

B. Memory Consumption

Table I shows the overall memory consumption, as re-
ported by the nesC compiler, of each test program.

The dramatic increase in memory consumption of the
security enabled programs is a consequence of the pure
software AES implementation used for the cryptographic
operations [24]. The RAM increase is largely due to the
buffer space required for encryption and may be subject to
further optimization. Most of the extra code and data space
can be reused for each security enabled remote invocation.
Support for security on additional dynamic wires or remote
interfaces requires only about the same amount of overhead
as is required for the plain duty case.

C. Energy Consumption

We also evaluated the energy consumption of the three
client programs. This was done by placing a 14.9 Ω current
sensing resistor in series with the 3.0 V power supply
and observing the power supply current waveform on an
oscilloscope.

In our experiments the transmitter pulse width varied
between 15 and 16 ms, and was the same for all three

programs. The energy consumed during transmission was
780 µJ. Just before the transmitter pulse started, a small
increase in power supply current was observed lasting for
3 ms (in the baseline and duties-only case) to 4 ms (in the
security enabled case). We assume this increase is due to
activities on the node that are done just prior to enabling
the radio for transmission. This compute burst consumed 17
µJ of energy in the first two programs and 22 µJ of energy in
the security enabled case. Presumably the additional energy
used in the security case is at least partially due to the
cryptographic computations.

Despite our term “compute burst,” it is likely that some
of this energy was actually being used to power up various
supporting components related to the upcoming transmitter
pulse. For example the CC2420 radio requires that its voltage
regulator and oscillator be turned on and allowed to stabilize
for a time before signals can actually be transmitted [21].
For example, Even when fully active the microcontroller
draws a maximum current of only about 500 µA [20]. In our
environment a 500 µA current burst of 4 ms corresponds
to just 6 µJ of energy which is clearly a minority of the
observed energy.

VIII. CONCLUSION

We have extended nesC with a light weight, link-layer,
secure RPC facility, yielding a language called SpartanRPC.
SpartanRPC is a middleware technology supporting secure
WSN applications comprising multiple protection domains.
It is ideal for settings in which multiple subnetworks ad-
ministered by distinct social entities cooperate to obtain a
holistic behavior. A language-level, capability-based autho-
rization mechanism provides application programmers with
an easy and effective means for specifying and enforcing
security policies.

Because of the long delays and unreliability inherent in
radio communication, SpartanRPC treats remote execution
of RPC services as fundamentally asynchronous. Inspired by
existing nesC practice SpartanRPC provide task-like units
of remote execution called duties. In addition SpartanRPC
extends nesC configurations to allow components on dif-
ferent nodes to be wired together in a dynamic manner,
i.e. remote wirings to RPC services can change during
program execution. This accommodates typical routing and
programming patterns in WSN applications.

We have implemented SpartanRPC in the Sprocket frame-
work [11], wherein RPC features are transformed at compile
into standard nesC code, and symmetric key cryptography
and MACs underlies the authorization mechanism. Empirical
results suggest that SpartanRPC as implemented in Sprocket
is efficient and realistic for programming practice. We have
illustrated the facility of the language itself with an imple-
mentation of secure directed diffusion in a heterogeneous
trust environment.
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