
TRUST MANAGEMENT IN DISTRIBUTED
RESOURCE CONSTRAINED EMBEDDED SYSTEMS

A Dissertation Presented

by

Peter C. Chapin

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fullfillment of the Requirements
for the Degree of Doctor of Philosophy

Specializing in Computer Science

January, 2014

Accepted by the Faculty of the Graduate College, The University of Vermont, in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy, specializing in Com-
puter Science.

Thesis Examination Committee:

Advisor
Christian Skalka, Ph.D.

Alan Ling, Ph.D.

Margaret Eppstein, Ph.D.

Chairperson
Jeffrey Frolik, Ph.D.

Dean, Graduate College
Cynthia J. Forehand, Ph.D.

Date: October 25, 2013

Abstract

Many embedded systems, such as wireless sensor networks, make use of highly resource
constrained devices. Security goals for such systems tend to focus on keeping data confi-
dential from outsiders or ensuring data integrity during communication. However as em-
bedded systems from different administrative domains increasingly come into contact, for
example via short hop radio links, a need arises for one system to allow partial access to
its resources from adjoining systems. This dissertation explores two approaches for pro-
viding distributed trust management facilities to resource constrained embedded systems,
in particular wireless sensor networks. The first is a directapproach using a secure remote
procedure call mechanism calledSpartanRPC. The second is a staged approach using a
two stage programming system calledScalaness/nesT. In addition to describing these two
approaches this dissertation also presents the results of evaluating them both in test en-
vironments and with a realistic application. Both approaches are feasible but the staged
approach is far more flexible and, depending on application requirements, more efficient.

Dedication

To my wife Sharon for her unwavering support, continuous encouragement, and patient

tolerance, and to my parents for showing me the value of education.

ii

Acknowledgments

This dissertation would not have been possible without the assistance and guidance of

many people. I would especially like to thank my adviser Christian Skalka for many years

of valuable feedback. I would also like to thank my collaborators Sean Wang, Scott Smith,

and especially Simone Willet and Michael Watson for their invaluable assistance in making

the work I describe here a reality. Finally I’d like to thank the faculty and staff of the

Department of Computer Science at the University of Vermontfor creating an environment

that allowed me to flourish.

iii

Table of Contents

Dedication .. ii

Acknowledgments .. iii

List of Tables .. vii

List of Figures .. viii

1 Introduction .. 1
1.1 Motivation . 4
1.2 Security Model .7
1.3 Related Work and Contributions .. . 10

1.3.1 Summary of Contributions .16
1.4 Dissertation Organization 17

2 Trust Management .. 18
2.1 Components of Trust Management Systems 20

2.1.1 Structure of an Authorization Decision 21
2.2 Features of Trust Management Systems 24

2.2.1 Formal Foundation .25
2.2.2 Authorization Procedure. Authorization Complexity. 25
2.2.3 Public Key Infrastructure (PKI) 27
2.2.4 Threshold and Separation of Duty Policies 27
2.2.5 Local Name Spaces .27
2.2.6 Role-Based Access Control .28
2.2.7 Delegation of Rights .28
2.2.8 Certificate Validity .29
2.2.9 Credential Negation .30
2.2.10 Certificate Revocation .31
2.2.11 Distributed Certificate Chain Discovery 31

2.3 Foundations of Authorization 32
2.4 The RT Trust Management System .34

2.4.1 Features .35

iv

2.4.2 Example .39
2.4.3 Semantics .41
2.4.4 Implementation .43

3 SpartanRPC and Sprocket .. 44
3.1 Overview and Applications .. 45
3.2 Technical Foundations .47
3.3 Duties and Remotability .48

3.3.1 Syntax and Semantics .48
3.3.2 Remotable Interfaces .50

3.4 Dynamic Wires .51
3.4.1 Component IDs, Component Managers51
3.4.2 Syntax and Semantics .52
3.4.3 Callbacks and First-Class IDs .54

3.5 Security Policy Specification 55
3.5.1 RPC Server Side Logic .55
3.5.2 RPC Client Side Logic .56
3.5.3 Example .57

3.6 The SpartanRPC Implementation .. . 58
3.6.1 Authorization and Security Protocols 59
3.6.2 Identifying Services Over the Air 67
3.6.3 Rewriting SpartanRPC to nesC .68

4 DScalaness/DnesT .. 74
4.1 Overview of DScalaness/DnesT Design 76

4.1.1 Modules as Staging Elements .81
4.1.2 Typing .82
4.1.3 Cross-Stage Migration of Types and Values. 82

4.2 The DnesT language .83
4.2.1 Syntax and Features of DnesT .83
4.2.2 Semantics of DnesT .86
4.2.3 DnesT Type Checking .92

4.3 The DScalaness Language .95
4.3.1 Syntax of DScalaness .96
4.3.2 Semantics of DScalaness .97
4.3.3 Serialization and Lifting .101
4.3.4 DScalaness Type Checking .102
4.3.5 Foundational Insights and Type Safety 104

5 Scalaness/nesT .. 106
5.1 NesT .106

5.1.1 Component Specifications .107
5.1.2 External Libraries .109

v

5.1.3 Structure Subtyping .113
5.1.4 Safe Casts .114
5.1.5 Array Operations .115

5.2 Scalaness .118
5.2.1 Scala Compiler Organization .120
5.2.2 Liftable Types .120
5.2.3 Lifting .124
5.2.4 MetaType .125
5.2.5 Module Type Annotations .126
5.2.6 Component Declarations .127
5.2.7 Runtime Support .130

6 Evaluation .. 135
6.1 Field Example .135
6.2 Sprocket .137

6.2.1 Memory Overhead .138
6.2.2 Transient and Steady State Processor Overhead 141
6.2.3 Transient Times for Directed Diffusion 143
6.2.4 Snowcloud with Sprocket .146

6.3 Scalaness/nesT .150
6.3.1 Snowcloud with Scalaness .150
6.3.2 Memory Usage .152

7 Conclusion .. 154
7.1 Future Work .156

A Scalaness/nesT Sample .. 158

References. .. 168

vi

List of Tables

6.1 RAM consumed by various storage areas 139
6.2 Memory consumption of test programs 141
6.3 Maximum message transfer rate .. 142
6.4 Processing time for transient operations 143
6.5 Transient time in single hop directed diffusion 145
6.6 Transient time in multi-hop directed diffusion 145
6.7 RAM and ROM comparison for SpartanRPC Snowcloud 150
6.8 RAM and ROM comparison for Scalaness Snowcloud 153

vii

List of Figures

1.1 Motivational Scenario .. 6

2.1 Structure of an Authorization Decision 22

3.1 Duty Implementation and Invocation Examples 49
3.2 Component Manager Interface and Type Definitions 52
3.3 Example Component Manager .53
3.4 Security Enabled Dynamic Wire .. 58
3.5 SpartanRPC Security Protocol Elements 60
3.6 Intersection Certificate Format (parenthesized numbers indicate byte counts)61
3.7 Session Key Processing Architecture 63
3.8 Duty Post Message .65
3.9 Client/Server Authorization Architecture 69
3.10 Dynamic Wire Rewriting .71
3.11 Server Skeleton Generation 72
3.12 Server Skeleton Wiring .. 73

4.1 Scalaness/nesT Compilation and Execution Model 75
4.2 DScalaness/DnesT Example .79
4.3 Program Syntax of nesT .84
4.4 Syntactic Definitions for Dynamic Configurations 87
4.5 Dynamic Semantics of Selected Expressions 88
4.6 Boot and Runtime Semantics .89
4.7 Semantics of Tasks and Configurations 90
4.8 Semantics of Declarations .. 91
4.9 Subtyping Rules .93
4.10 Typing Rules for Selected DnesT Expressions 94
4.11 Selected Declaration and Module Typing Rules 95
4.12 The Syntax of DScalaness .96
4.13 DScalaness Module Semantics .. . 100
4.14 DScalaness Module Typing Rules .. . 102

5.1 Example nesT Module .108
5.2 Example LibraryIC/EC configurations 111

viii

5.3 Representation of External Components 112
5.4 Wiring nesT Components .113
5.5 Module Type Syntax .126
5.6 Generated Runtime Support for Composition 132
5.7 Generated Instantiate Method 134

6.1 A Snowcloud Sensor Node (L,C) and Harvester Device (R). 136
6.2 Running Snowstorm .151

ix

Chapter 1

Introduction

Embedded systems present difficult programming challenges(Mottola and Picco 2011).

For reasons of size, power consumption, disposability, or some combination of these things,

embedded devices are often highly resource constrained. For example, a typical device

might have only 48 KiB of program ROM, 10 KiB of RAM, and use a small, 16 bit micro-

controller running at 8 MHz (moteiv 2006). Yet embedded applications are increasing in

complexity and often provide mission-critical or even safety-critical services. Such systems

need to be both efficient and correct.

This dissertation specifically looks at the problem of providing distributed trust man-

agement in resource constrained embedded systems. Heretrust managementrefers to a

general approach for authorizing access to resources in an environment where the iden-

tity of requesting principals is not known to the authorizer. A trust management system

provides a way for the authorizer to define an access policy interms of arbitrary certified

attributes that the requester must possess. Many trust management systems have been de-

scribed in the literature (Chapin, Skalka, and Wang 2008), and they vary in complexity,

expressivity, and mathematical foundations. However, they all attempt to provide a well

structured approach to the problem of access control in widely distributed and dynamic

1

environments.

Trust management systems are typically designed for use by authorizers with resource

rich machines such as commercial web servers. Yet there are embedded applications that

could also benefit from trust management. For example, “smart cars” that communicate

with each other about road conditions (Seepold, Madrid, Gómez-Escalonilla, and Nieves

2009), or body area networks that provide medical monitoring features (Shnayder, Chen,

Lorincz, Jones, and Welsh 2005; Chen, Gonzalez, Vasilakos, Cao, and Leung 2011), may

encounter many unknown principals during their operation.The security and safety of

these applications, and many others, will depend on their ability to distinguish trustworthy

principals from unreliable or malicious ones.

For reasons of space and time efficiency, many embedded systems are programmed in

low level languages such as C. Programming at that level is complicated and error prone. It

is desirable, therefore, to provide programmers with convenient abstractions to shield them

from low level complexities. These abstractions should be in the programming language

itself, and this dissertation is about providing enriched languages that can address the needs

of modern embedded systems in general and the embedded trustmanagement problem in

particular. Thislanguage basedapproach moves some of the work of producing correct

programs to the language compiler and runtime system. Language features can be formally

analyzed and rigorously tested once and then applied to manyapplications. This is in

contrast to each application being an ad-hoc construction of customized components with

limited use beyond the application for which they were created.

The value of formal foundations cannot be overstated. In critical systems where safety

or security is at stake, a rigorous understanding of the mechanisms being used is essential.

For example, trust management systems that provide a precisely defined policy language

are preferable to systems that use informal methods.

The focus of this dissertation is on a kind of embedded systemcalled awireless sensor

2

network(WSN). Such systems consist of a network of small sensors or actuators that are

connected by way of short hop radio links. Commonly such networks include one or more

base stations, or “hubs,” with wider connectivity that serve as an interface between the

sensor network and external systems. Wireless sensor networks are an area of intense

study with many envisioned applications ranging from environment, asset, and structural

monitoring to emergency response (Culler, Estrin, and Srivastava 2004; Lorincz, Malan,

Fulford-Jones, Nawoj, Clavel, Shnayder, Mainland, Welsh,and Moulton 2004). Yet despite

the use of sensor networks to demonstrate the systems described herein, the techniques can

be used with a wide range of embedded applications.

Two approaches to solving the problem of providing trust management-style distributed

authorization in resource constrained embedded systems are discussed here. The first ap-

proach is based on a new remote procedure call (RPC) discipline namedSpartanRPC

(Chapin and Skalka 2010; Chapin and Skalka 2013). In this method all trust manage-

ment computations are done directly on the embedded devices. However, the complexity

of the system is hidden from the programmer behind a simple extension to the widely used

nesC programming language (Gay, Levis, von Behren, Welsh, Brewer, and Culler 2003).

In order to implement thisdirect approach, a compiler calledSprockethas been created.

Sprocket takes an extended dialect of the nesC language as input and outputs an equivalent

program in ordinary nesC. In addition Sprocket outputs the necessary runtime support to

process authorization requests and policy statements in theRT0 trust management language

(Li, Mitchell, and Winsborough 2002; Li and Mitchell 2003b).

The second approach presented is based onstaged programming(Taha and Sheard

1997; Sheard and Jones 2002; Mainland, Morrisett, and Welsh 2008; Liu, Skalka, and

Smith 2012). In a staged environment, a first stage program is used to compose and spe-

cialize a lower level, second stage program. Specialized code can often be considerably op-

timized. However, flexibility is retained because the first stage program can be re-executed

3

at a later time to re-specialize the second stage program as needed.

Unlike with many staging systems, the work described here uses stages with different

programming languages and that execute on different machines, i.e., in different address

spaces. When applied to embedded systems the second (and final) stage must be in an

embedded systems language running on the embedded hardware, whereas the first stage

need not be as restricted.

This dissertation also describesScalaness(Chapin, Skalka, Smith, and Watson 2013),

an extension of Scala (Odersky, Spoon, and Venners 2011) with features that allow the

programmer to compose and specialize components written ina reduced dialect of nesC

callednesT. An important and novel feature of Scalaness is that it extends Scala’s type

system, so that a well-typed Scalaness program will always generate a well-typed nesT

program. Thiscross-stage type safetyproperty means the type correctness of the program

that ultimately runs on the embedded device is guaranteed bythe first stage Scalaness

compiler.

Scala was chosen as the basis for the first stage language largely for pragmatic reasons,

primarily to build a system that could be used for real applications. Scala is a rich language

that runs on the Java Virtual Machine (JVM) and has access to the Java ecosystem. Also

the Scala compiler has a plugin architecture, and it was originally intended to implement

Scalaness as a compiler plugin. Unfortunately, as described in chapter 5that proved diffi-

cult and Scalaness was instead implemented as a direct modification to the Scala compiler

itself.

1.1 Motivation

As an example of an application that illustrates the concepts of trust management in em-

bedded systems, consider a first responder situation in which multiple social entities must

4

interact and cooperate. Recent work has shown the effectiveness of wireless sensor net-

works in such scenarios (Gao, Pesto, Selavo, Chen, Ko, Lim, Terzis, Watt, Jeng, Chen,

Lorincz, and Welsh 2008; Lorincz, Malan, Fulford-Jones, Nawoj, Clavel, Shnayder, Main-

land, Welsh, and Moulton 2004) in their ability to coordinate multiple data collection and

communication devices in an ad-hoc, easily deployable fashion. However, data collection

and communication in this scenario (and other similar ones)must be a secured resource,

due to, e.g., HIPA requirements in the case of medical response. Furthermore, security must

be coordinated on-site in a sensor network comprising subnetworks administered separately

(police, medical units from different hospitals, etc.), and no prior coordination between ad-

ministrations can generally be assumed. Trust management authorization is well suited for

this kind of scenario.

For instance, if an EMT team deploys a sensor network to monitor patient locations and

vital signs, a security policy can be imposed whereby responding police departments can

deploy their own sensor network, and through it access patient identity and location data

but not medical data directly from the EMT network. This direct dataaccess will often

be necessary due to real-time constraints and lack of Internet connectivity in emergency

situations.

SpartanRPC’s ability to do trust management on the network nodes themselves would

be invaluable in this scenario. However, Scalaness may alsobe useful. In the staged case,

powerful base stations could communicate perhaps by way of shared files manually carried

from one machine to the next. Since the first stage program does not need to execute

frequently such sharing could be done while each service provider is setting up at the

location of the emergency. Other environmental and security factors could be provided

to the first stage program at that time, allowing the node software to be quickly and easily

customized for the particular disaster at hand.

More generallyFigure 1.1shows two wireless sensor networks owned by separate ad-

5

Figure 1.1: Motivational Scenario

ministrative domains,A andB. The lower part of the figure shows the networks as con-

sisting of multiple sensor nodes. Each node in the networks is an example of a resource

constrained embedded system. The two networks overlap in space so that nodes from the

two networks can potentially communicate with each other.

In some applications it may be desirable for the networks to share certain information

while keeping other information private. As one example,A andB may agree to use each

other’s nodes for accurate time synchronization to their mutual best interest without want-

ing to share any other functionality. Alternatively, perhaps the networks are willing to carry

data from foreign isolated nodes thus increasing each other’s connectivity and enhancing

their useful lifetimes, all without being able to access each other’s primary functions.

In other scenarios one of the networks, sayB, may be reduced to a single mobile node

that wanders into the field of an established networkA. In that caseB may wish to query

A or otherwise interact with it, yetA andB may have no prior association.section 6.1

describes a specific scenario of this type used during the evaluation of the work presented

here.

6

Trust management systems provide exactly the kind of flexible, policy-driven autho-

rization control needed to address these situations. The ability to define access policy for

unknown principals, the hallmark of trust management, is particularly important in the case

of mobile embedded systems where encountering new principals is routine.

SpartanRPC addresses this problem directly by providing a way for the embedded de-

vices themselves to execute trust management logic. In thatcase no additional supporting

infrastructure is needed but the nodes are required to do extensive computations.

Scalaness, as a staged programming system, requires support beyond the nodes where

the first stage program can execute. This additional supportis shown on top ofFigure 1.1

where Scalaness programs execute on the base stations ofA andB to compute node pro-

grams for deployment that are specialized with appropriatesession keys. The Scalaness

programs can communicate over the Internet to share credentials or other security tokens

as required.

1.2 Security Model

Although many security properties may be of interest to embedded systems applications,

only one is the focus of this work:a system is said to be secure if only authorized users of

a resource can access it. In this context aresourcecould be a physical device on a node,

e.g., a sensor or an actuator, or it could be a pure software component providing, e.g., a

computation, communication, or storage service. This workis only concerned with access

to physical devices via application level software; accessvia physical attacks or attacks

against low level device drivers is not considered in the model used here.

Each resource is presumed to have anauthorizerwho controls access to that resource.

A user is authorized for a resource if and only if the authorizer’s access policy for that

resource grants access.

7

In the manner of many trust management systems, and in theRT0 system specifically,

each principal, also called anentity, is represented directly by a public/private key pair.

Consequently the requester of a resource does not need to authenticate to the authorizer to

prove her identity, nor provide identity-to-key binding certificates. She only needs to prove

that she has access to the private key of an authorized public/private key pair. Accordingly

authorizers define policies in terms of the (public) keys themselves. While keys can be

given names, such names are purely for local convenience; they have no significance to the

security of the system and need not be shared.

An important consequence of the lack of identity-to-key bindings is that impostor keys

can not be created. If an attacker generates a new public/private key pair, it would be re-

garded as an entirely new entity. Access would be evaluated based on that entity’s certified

attributes (if any). It is not possible for a “bogus” principal to pose as a legitimate principal.

As is typical for trust management systems, this moves the problem of associating a spe-

cific attribute with the correct key to those who create the attribute certificates. However,

those certificates are created off line before resource access is requested and evaluated; re-

questers and authorizers are not concerned withhowcertificates are created and the means

used to produce them is outside the scope of this security model.

In order to improve the efficiency of normal message transfers between a requester and

an authorizer, symmetric session keys are computed using a simple Diffie-Hellman key

agreement protocol (Diffie and Hellman 2006) as described insection 3.6.1. In this protocol

each of two communicating entities compute a common shared secret by combining the

public key of its peer with its own private key. No secret information is transmitted over

the network and an eavesdropping third party is unable to compute the same shared secret

without access to either private key.

Yet for the reasons given earlier, this simple approach is nevertheless not vulnerable to

a man in the middle attack. The key used by the authorizer to authorize access is the same

8

as that used to compute the session key. Consequently only a legitimate user will be able to

compute the same session key. Either the man in the middle will not be authorized or else

the man in the middle is a legitimate user of the resource anyway.

A man in the middle would be able to pose as a legitimate service from the point of view

of the requester. However, requester messages are not considered secret so an eavesdrop-

per could read them in any case. Since the systems described here use only unidirectional

communication, requesters that wish to receive results from an authorizer must provide a

suitable service of their own for authorizers to use. In thatcase the roles of requester and

authorizer are reversed, and the service provided by the original requester could be pro-

tected by an appropriate policy to prevent unauthorized nodes from returning fake results.

Ultimately the session key is used to compute a message authentication code (MAC) on

requester messages. Verification of this MAC proves that therequester is in possession of

a session key that was previously computed using an authorized public key. The MAC on

request messages then serves to verify authorization;no unauthorized user can compute a

valid MAC.

Other security properties are not directly supported by this work. Notably, neither

SpartanRPC nor Scalaness address the issue of node tampering or denial of service attacks.

Both systems as described here are also vulnerable to various kinds of replay attacks. Issues

of data confidentiality are also outside the immediate scopeof this work.

However, SpartanRPC and Scalaness do not interfere with theaddition of other security

services to an application. For example, an application specific protocol that adds a mono-

tonic counter to messages could be layered on top of either system to protect against replay

attacks. Scalaness, in particular, could be used to supportsuch an approach by letting a first

stage program compose and specialize the mechanism, choosing appropriate parameters at

first stage execution time. Confidentiality of messages could also be added by encrypting

message contents with the previously negotiated session key.

9

As usual it is assumed that the cryptographic primitives used by both systems are secure

in the sense that it is computationally infeasible for any attacker of interest to defeat the

cryptographic protections directly.

1.3 Related Work and Contributions

The first trust management systems were inspired by early foundational work in authenti-

cation logics such as BAN (Burrows, Abadi, and Needham 1990) and authorization logics

such as ABLP (Abadi, Burrows, Lampson, and Plotkin 1993). However, the concept of

trust management as an independent area of study was first introduced with PolicyMaker

(Blaze, Feigenbaum, and Lacy 1996; Blaze, Feigenbaum, and Strauss 1998). PolicyMaker

policies are implemented as arbitrary programs in a suitable “safe” programming language.

This gives the system great flexibility but also introduces intractability.

KeyNote (Blaze, Feigenbaum, Ioannidis, and Keromytis 1999) is a direct descendant of

PolicyMaker. KeyNote restricts PolicyMaker by specifyinga limited language for creating

policies. However, a full analysis of KeyNote’s policy language (Li and Mitchell 2003a)

shows that certain authorization problems nevertheless remain undecidable. KeyNote has

been used to enforce IPsec security requirements (Blaze, Ioannidis, and Keromytis 2002;

Blaze, Ioannidis, and Keromytis 2003).

SDSI/SPKI (Rivest and Lampson 1996; Ellison, Frantz, Lampson, Rivest, Thomas, and

Ylonen 1999) provides a relatively simple, yet expressively interesting trust management

language that is a precursor to theRT0 system used here. The semantics of SDSI/SPKI

have been analyzed by several authors (Abadi 1998; Halpern and van der Meyden 1999;

Howell and Kotz 2000; Li 2000; Clarke, Elien, Ellison, Fredette, Morcos, and Rivest 2001)

making it one of the best studied trust management systems. SDSI/SPKI has been used to

provide security in component based programming language design (Liu and Smith 2002).

10

QCM (Gunter and Jim 1997; Gunter and Jim 2000a) and its successor SD3 (Jim 2001;

Jim and Suciu 2001) cast distributed authorization as a kind of distributed database prob-

lem. As a result, these systems are able to leverage well-studied database techniques and

abstractions. These systems reveal a deep and interesting connection between authorization

logics and database theory that inspired later work with database query languages such as

Datalog and DatalogC (Li and Mitchell 2003a).

Other notable examples of trust management systems includeCassandra (Becker and

Sewell 2004), a system that has been studied in the context of the United Kingdom’s pro-

posed nationwide electronic health records database. Alsothe Extensible Access Control

Markup Language (XACML) (OASIS 2006a) and the Security Assertion Markup Lan-

guage (SAML) (OASIS 2006b), define XML policy and assertion languages that make use

of many trust management concepts.

While there has been a great deal of research on security in sensor networks, much of

that work has focused on low level concerns such as link layersecurity, key distribution

(Çamtepe and Yener 2005), and secure network protocols (Gupta, Millard, Fung, Zhu,

Gura, Eberle, and Shantz 2005; Fouladgar, Mainaud, Masmoudi, and Afifi 2006). Systems

such as TinySec (Karlof, Sastry, and Wagner 2004) and MiniSec (Luk, Mezzour, Perrig,

and Gligor 2007) are based on shared secrets and generally assume that an entire network

comprises a single security domain. Furthermore, these systems support confidentiality

and integrity properties, but not access control.

Extending sensor network software platforms with support for secure interactions be-

tween domains has been studied in previous research on SSL for sensor networks (Jung,

Hong, Ha, Kim, and Kim 2009). However, that work was focused on extending the In-

ternet to sensor networks (aka “IP for WSNs”), whereas SpartanRPC is a more general

system for enhancing secure communicationswithin a sensor network. Research on sensor

network security has also addressed secure routing (Karlof and Wagner 2003), cryptogra-

11

phy (Bertoni, Breveglieri, and Venturi 2006), and hardware issues (Perrig, Stankovic, and

Wagner 2004). In contrast to these low-level systems, SpartanRPC provides language-level

abstractions for secure RPC services.

More closely related is a system for establishing fine-grained, “node-level” policies

in sensor networks (Claycomb and Shin 2011). However, this work is more focused on

group-based key negotiation and distribution, and while itdoes offer a policy language, it

is rooted in implementation details and not as a separable specification. Also, that work

does not provide a language API for integrating their systeminto secure applications as

does SpartanRPC.

Previous related work also illustrates interest in and useful applications of RPC in em-

bedded networks. For example, the Marionette system uses network layer RPC for remote

(PC-based) analysis and debugging of sensor networks (Whitehouse, Tolle, Taneja, Sharp,

Kim, Jeong, Hui, Dutta, and Culler 2006). The Fleck operating system provides a small

pre-defined set of RPC services for sensor network applications, while the trustedFleck

system extends this with a form a secure RPC (Hu, Corke, Shih, and Overs 2009; Hu,

Tan, Corke, Shih, and Jha 2010). S-RPC provides an RPC facility for sensor networks

that allows remote services to be added to the system dynamically (Reinhardt, Mogre, and

Steinmetz 2011). SpartanRPC differs from these systems in that it extends the nesC pro-

gramming language (unlike trustedFleck) to allow programmer definition of secure RPC

services (unlike S-RPC) that can be accessed by nodes withinthe network itself (unlike

Marionette). SpartanRPC is similar to, and inspired by, TinyRPC (May, Dunning, Dowd-

ing, and Hallstrom 2007). TinyRPC, however, does not provide security and has different

semantics that are not as expressive as SpartanRPC’s approach. In particular, SpartanRPC

allows asynchronous invocations to be sent to a dynamicallyselected subset of neighbors.

TeenyLIME allows application programs to access an abstract “tuple space” that is the

union of tuple spaces on the local node and the immediately neighboring nodes (Costa,

12

Mottola, Murphy, and Picco 2007). This provides an alternative to RPC for uniformly

accessing remote and local data. However, interaction withthe middleware is by way of

a dedicated API; there is no attempt to provide a true RPC mechanism. Also TeenyLIME

does not address issues of access control.

Secure Middleware for Embedded Peer to Peer systems (SMEPP)is a general frame-

work for creating security sensitive applications from a distributed network of embedded

peers (Brogi, Popescu, Gutiérrez, López, and Pimentel 2008). SMEPP Light (Vairo, Al-

bano, and Chessa 2008) is a reduced version of SMEPP to address the resource constraints

of wireless sensor networks. SMEPP Light provides a publish/subscribe communication

model using directed diffusion (Intanagonwiwat, Govindan, Estrin, Heidemann, and Silva

2003) to distribute “events” to all subscribers and symmetric key cryptography to pro-

vide confidentiality and data integrity within a group of nodes. However, SMEPP Light is

not integrated into a programming language and does not provide a remote procedure call

mechanism. Furthermore, SMEPP Light only supports a simplemodel of access control

based on group membership.

High level macroprogramming languages such as Kairos (Gummadi, Gnawali, and

Govindan 2005), and Regiment (Newton, Morrisett, and Welsh 2007) provide a way to

program the entire network as a single entity. These systemsattempt to hide not only the

inter-node communication from the programmer, but also theentire node level programs.

SpartanRPC operates at a much lower level making it potentially more flexible and also,

unlike these macroprogramming systems, SpartanRPC addresses access control issues in

networks containing multiple security domains.

Whole network programming of wireless sensor networks has also been investigated

using mobile agents in systems such as Agilla (Fok, Roman, and Lu 2009) and Wiseman

(González-Valenzuela, Chen, and Leung 2010). However, like the macroprogramming

systems mentioned previously, neither of these systems address issues related to access

13

control in the presence of multiple security domains.

The potential of applying staged metaprogramming techniques to sensor networks was

explored in the functional sensor language Flask (Mainland, Morrisett, and Welsh 2008).

Flask allows functional reactive programming (FRP)-basedstream combinators to be pre-

computed before network deployment, but it is possible to generate ill-typed Flask ob-

ject code since cross-stage static type checking is not performed. Hume (Hammond and

Michaelson 2003) is a domain specific language for real-time embedded deviceprogram-

ming. It includes a metaprogramming layer but that layer is more like nesC’s configuration

files in that there is a very restricted syntax for a few special metaprogramming operations

including component wiring, macros, and code templating.

MetaML (Taha and Sheard 1997; Taha 2004) and MetaHaskell (Mainland 2012) are

foundations the work described here builds on. MetaHaskelldoes support heterogeneous

language staging where the lower stage language is defined bya plug-in and several instan-

tiations have been defined including one for a low-level C-like language. Like this disser-

tation’s approach, they guarantee type safety of all lower stage code produced. They use

a more traditional metaprogramming model, however, not theprocess separationmodel

needed for embedded systems metaprogramming where different stages execute on dif-

ferent machine architectures and in different address spaces. Also neither MetaML nor

MetaHaskell address the issues of metaprogramming module composition and type spe-

cialization. In contrast, Scalaness follows the foundational work on Framed ML (〈ML〉)

(Liu, Skalka, and Smith 2012); subsection 4.3.5discusses how it serves as the theoretical

underpinning of the Scalaness system.

Lightweight Modular Staging (Rompf and Odersky 2010) describes a method of ex-

pressing staged computations using a Scala host framework without any compiler modi-

fications. The approach allows cross-stage type safety but does not supportdynamic type

construction, a method by which second stage types can be manipulated as first stage val-

14

ues. This feature provided by Scalaness is important for optimizing the layout of data

structures by tuning the types used for their members.

Actor based sensor metaprogramming has been studied in (Cheong 2007); this work

also focuses on high level dynamic reprogrammability but isuntyped. More broadly,

metaprogramming is known to be useful for increasing the efficiency of systems appli-

cations. One example is Tempo (Consel, Hornof, Marlet, Muller, Thibault, Volanschi,

Lawall, and Noyé 1998), a system that integrates partial evaluation and type specialization

for increasing efficiency of systems applications. Ur (Chlipala 2010) allows for type safe

metaprogramming for web applications.

The units of staged code composition in nesT aremodules. Countless different module

systems exist, but they are primarily designed to achieve separate compilation and sound

linking (Cardelli 1997).The different design goals of nesT lead to different design choices

in nesT modules. For example, data crossing nesT module boundaries needs to conform

to the property of process separation, a non-issue in standard module system designs. In

addition, nesT modules allow values/types across the boundary of modules to be flexibly

constructed, including dynamic construction of types. Module systems such as ML mod-

ules (MacQueen 1984) and Units (Flatt and Felleisen 1998) allow types to be imported/ex-

ported as Scalaness supports. However, there are several features of ML modules including

type hiding that Scalaness does not aim to support.

NesT modules are more expressive in their support of first class modules as values and

the possibility of dynamic construction of “type exports.”That said, first class modules

are not new (Mitchell, Meldal, and Madhav 1991; Ancona and Zucca 2002). The novelty

of nesT arises in its application to program staging and the incorporation of dynamic type

construction.

The type parametricity of System F and F≤ (Cardelli and Wegner 1985), and the prac-

tical type systems it inspired such as Java’s generics, do not treat types as first class values.

15

C++ templates support types as meta values in template expansion, but type safety of gen-

erated code is not guaranteed without full template expansion. Concepts (Gregor, Järvi,

Siek, Reis, Stroustrup, and Lumsdaine 2006) improves on this, but types are still not first

class values.

1.3.1 Summary of Contributions

The main contributions of this work include a demonstration, for the first time, of the

feasibility of using trust management in resource constrained embedded systems such as

sensor networks. No previous work has attempted to implement support for such a general

and flexible authorization system on such small devices. Previous work on sensor network

security has tended, instead, to focus on low level issues, e. g., providing confidentiality on

links, or on relatively ad-hoc solutions to specific problems, e. g., key distribution.

In contrast, the SpartanRPC language, together with its implementation in Sprocket,

provide language based support for general purpose distributed authorization in sensor net-

works. Trust management authorization can now be used as a primitive for building more

elaborate security services in complex embedded networks spanning multiple security do-

mains where fine grained access control is required. SpartanRPC also provides a new re-

mote procedure call discipline for nesC featuring asynchronous invocations and an ability

to dynamically control the subset of neighbors to which eachremote invocation is directed.

This work also introduces Scalaness/nesT as a well founded,two stage programming

system for developing general embedded applications. The foundations of Scalaness are

presented in the distilled languages DScalaness and DnesT.An implementation of the sys-

tem has been created by modifying the open source Scala compiler.

Scalaness offers a unique combination of staging with cross-stage type safety, process

separation, and dynamic type construction that make it a powerful tool for creating flexible

16

and efficient embedded applications. Scalaness treats the trust management problem as

simply one application of many, and this work demonstrates Scalaness by using it to re-

implement a solution to embedded trust management in sensornetworks.

This work also describes the use of both SpartanRPC and Scalaness on a realistic field

example with non-trivial application requirements. This example shows that both systems

can be used to solve real-world problems and are not merely toy systems of theoretical

interest only.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Trustmanagement systems are de-

scribed, in general, inchapter 2, outlining the different features provided by common trust

management systems and motivating their use. Special focusis given to theRT family of

trust management systems used in this work. The design of SpartanRPC is described, as

well as the details of its implementation, inchapter 3. Of particular note is the description

of the added support forRT0 trust management to a general RPC mechanism. Scalaness

and nesT are introduced in more detail inchapter 4, and then the syntax and semantics

of both languages are described, using simplified “distilled” versions of those languages

calledDScalanessandDnesT. The implementation of the practical Scalaness/nesT system

is described inchapter 5, relating the features of the implementation to the earlierfounda-

tional presentation. An evaluation of both systems is provided inchapter 6using simple

test programs in the context of a realistic field example. Theconclusion is documented in

chapter 7. Finally, in Appendix Athe full source code of a simple Scalaness/nesT sample

is demonstrated, with commentary.

17

Chapter 2

Trust Management

Distributed applications that span administrative domains have become commonplace in

today’s computing environment. Electronic commerce, highperformance scientific com-

puting, groupware, and multimedia applications all require collaborations between distinct

social entities. In such systems each administrative domain, also called a security domain,

controls access to its own resources and operates independently of other administrative

domains. The problem of how to best specify and implement access control in such an en-

vironment has been a topic of considerable research. To address this problem the concept

of trust management was introduced (Blaze, Feigenbaum, and Lacy 1996).

Most existing embedded applications entail only a single administrative domain that

owns the embedded devices. Security in that context is mostly concerned with preventing

access by outsiders. However some applications have been described, such as scenarios

involving emergency response (Lorincz, Malan, Fulford-Jones, Nawoj, Clavel, Shnayder,

Mainland, Welsh, and Moulton 2004), that could easily benefit from a facility that allowed

multiple domains to interact in a controlled manner. As embedded systems in general, and

sensor networks in particular, become more pervasive, situations where multiple domains

interact will become more common. Devices in several domains will then be motivated to

18

use each other’s resources in an effort to increase their efficiency, functionality, or lifetime.

Hence the need for fine-grained application level access control will increase.

At the heart of all trust management systems is theauthorization procedure, which de-

termines whether access to a resource should or should not begranted based on a number

of conditions. While a number of techniques have been proposed to characterize authoriza-

tion in trust management systems, the most promising are those based on rigorous formal

foundations. This argument is not new, in fact it has motivated trust management research

since its inception (Woo and Lam 1993). When security is at stake it must be possible to

specify policies in a precise, unambiguous way, and to have confidence that those policies

are correctly enforced. Formally well founded trust management systems achieve this, pro-

viding a setting in which reliability can be rigorously established by mathematical proof. In

particular, various logics have served as the foundation for trust management (Abadi 2003;

Bertino, Catania, Ferrari, and Perlasca 2003).

It is important to clearly distinguish betweenauthorizationandauthentication. The

latter addresses how to determine or verify the identity of principals in a transaction. Au-

thorization, on the other hand, is about what the principalsare permitted to do once their

identities are known. Although any real implementation of an authorization system will

rely on authentication to establish identities, and key-to-identity bindings may even have

an abstract representation in the system, authorization generally treats authentication and

(public) key infrastructure as orthogonal issues.

Authorization in trust management systems is more expressive than in traditional ac-

cess control systems such as role based access control (RBAC) (Sandhu, Coyne, Feinstein,

and Youman 1996). In those simpler models, an assumption is made that all principals

are known to the authorization procedure a priori. Access isbased on the identities of au-

thenticated principals. But in a distributed environment creating a single, local database

of all potential requesters is untenable. Where there are multiple domains of administra-

19

tive control, no single authorizer can be expected to have direct knowledge of all users of

the system. For example, a sensor network owned by a university might want to provide

access not only to the university’s students, but also to visiting professors, guest lecturers,

and other entities known to cooperating institutions.

Finally, basing authorization purely on identity is not a sufficiently expressive or flexible

approach, since security in modern distributed systems often utilizes more sophisticated

features (e.g., delegation) and policies (e.g., separation of duty (Simon and Zurko 1997)).

These issues are addressed by the use of trust management systems.

2.1 Components of Trust Management Systems

Trust management systems in practice comprise a number of functions and subsystems,

which can be divided into three major components:the authorization decision, certificate

storage and retrieval, and trust negotiation. The authorization decision is where the se-

mantics of the trust management system are made manifest by way of some core logical

structure. Certificate storage and retrieval is relevant tothe physical location of certificates

that are representations of access control elements such ascredentials and policies. For ex-

ample, systems have been proposed for storing SPKI certificates using DNS (Nikander and

Viljanen 1998) and for storing SDSI certificates using a peer-to-peer file server (Ajmani,

Clarke, Moh, and Richman 2002). Trust negotiation (Winsborough, Seamons, and Jones

2000; Yu, Ma, and Winslett 2000; Seamons, Winslett, and Yu 2001; Yu, Winslett, and

Seamons 2001; Winsborough and Li 2002; Winsborough and Li 2004) is necessary for

access control decisions where some elements of access policies or the credentials used to

prove authorization with those polices should not be arbitrarily disclosed. For example,

in (Winsborough, Seamons, and Jones 2000) a scheme is proposed whereby access rights

held by requesters are protected by their own policies, and both authorizers and requesters

20

must show compliance with policies during authorization, i.e., they must negotiate.

The importance of these other components notwithstanding,the discussion in this chap-

ter focuses on authorization decisions. This is because theauthorization decision is the

basis of any trust management system. Furthermore, not all the systems proposed in the

literature have been developed sufficiently to include certificate storage implementations or

trust negotiation strategies. Finally, the applications of trust management described in this

dissertation do not use a formal approach for certificate handling nor any trust negotiation.

2.1.1 Structure of an Authorization Decision

The authorization decision component of a trust managementsystem includes more than

just a core authorization semantics. The wordsystemhere is defined as the set of compo-

nents that provide an implementation, not just an abstract specification of the authorization

semantics. In this section, the components of a generic authorization decision are identified

and its structure is characterized.

Figure 2.1illustrates the structure of an authorization decision. This graphic is meant as

a rough sketch, not a formal specification, and not all trust management systems contain all

the components described. The graphic is read from top to bottom, and shows the flow of

information through a particular authorization process, with output computed in response

to an authorization request. The diagram is intentionally vague about the nature of the

output: in the simplest case, the output is a simple “yes” or “no” decision as to whether or

not to grant resource access, but in systems that support trust negotiation, the output could

be a partial answer that provides direction for additional input. Within the scope of this

dissertation, focus is concentrated on the case where the output is a boolean value, hence

the terminology authorizationdecision. The core authorization semanticsL implement the

authorization decision, and may be a specialized inferencesystem, or a proof search in a

21

Output

D

C

C

V

QT

P

P

C

Q

L

T

T

T

P : Policy

C : Certificates

Q : Authorization Query

V : Certificate Validation

L : Authorization Mechanism

TP : Policy Compilation

TC : Credential Encoding

TQ : Query Compilation

D : Distributed Certificate Discovery

Figure 2.1: Structure of an Authorization Decision

generic programming logic such as Prolog, for example. The authorization semantics takes

as input parameters fromC, P , andQ, which are now described in detail.

Local policyP is defined in some specification language, that is transformed into terms

understood by the core semantics by the transformation function TP . This translation may

just consist of parsing from concrete to abstract syntax, orTP may compile statements in a

high-level policy language into lower level terms for the core semantics. For example, TPL

(Herzberg, Mass, Michaeli, Naor, and Ravid 2000) provides an XML-based “trust policy

language” that is compiled into Prolog.

Credentials for a particular requester may be defined as partof local policy. An earmark

of trust management systems, however, is their ability to extend local policies with creden-

tials conferred by non-local authorities. This is realizedas a set of available certificatesC

that are transformed by a functionTC into credentials defined in terms understood by the

core semantics. The transformationTC provides a level of indirection allowing systems

to choose between various certificate wire formats and PKIs such as X.509 (International

22

Telecommunications Union 2000) or WS-Security (OASIS 2006c). When working with

resource constrained embedded systems it is desirable to use certificate formats that are as

compact as possible, as described insection 3.6.1, but that does not affect the behavior of

the trust management system.

The transformationTC also has special significance for the semantics of trust manage-

ment systems, since it is often not a straight parsing or compilation procedure. Rather,

certificates may be rejected, or their credential representations enhanced, by certificate va-

lidity information. Validity information is external to the authorization semantics in some

systems, but internal to it in others, so the certificate validation component of the autho-

rization decisionV is represented as a dashed box.

For example, any given certificatec ∈ C almost always defines a finite lifetime for the

certification, also called a validity interval (Winslett, Ching, Jones, and Slepchin 1997).

Some trust management systems such as PCA (Bauer, Schneider, and Felten 2002) sup-

port lifetime information in the authorization semantics,and in such a caseTC can map

the lifetime information inc to its credential representation. However, other systems do not

represent lifetimes in the authorization semantics per se (that is, inL), and in such cases the

onus is onTC to filter out expired certificates. For example, SPKI provides a mechanism for

certificates to be checked on-line to see if they have been revoked (Ellison, Frantz, Lamp-

son, Rivest, Thomas, and Ylonen 1999), but this mechanism is not part of SPKI’s formal

structure. This means on the one hand SPKI’s revocation policy cannot be expressed in the

SPKI policy language itself, nor enforced by its authorization semantics. On the other hand

it allows a SPKI implementation to apply a different revocation policy without changing

their underlying logical structure, and in general the difficulties associated with formalizing

certificate revocation (Stubblebine 1995; Stubblebine and Wright 1996; Rivest 1998a) can

be avoided, while a means for certificate revocation in the system is still available.

In addition to policyP and certificatesC, the authorization decision takes as input a

23

question or goalQ that is specialized for a particular access request. As an example, some

trust management systems, such as SDSI andRT0 (Li, Mitchell, and Winsborough 2002;

Li and Mitchell 2003b), define roles. These systems allow one to prove that a particular

principal is in a particular role. Resources are associatedwith roles, and the authorization

decision is based on whether the requester is a member of the relevant role. The trans-

formationTQ translates the goal into terms understood by the core semantics. Finally, the

core semantics combines policies and credentials established by input certificates to deter-

mine whether the authorization goal is satisfied, and outputs “yes” or “no” based on this

determination.

However, as denoted by the dotted line, some systems also provide a “feedback” mech-

anismD between the semantics of authorization and certificate collection. Rather than

merely answering “no” outright in case an authorization goal cannot be reached, the system

might identify credentials that are missing and attempt to collect them. This functionality

is sometimes calleddistributed certificate chain discovery(Li, Winsborough, and Mitchell

2003) or policy directed certificate retrieval(Gunter and Jim 2000b).

Whatever the specifics, it is clear that this functionality makes for a more flexible system

in terms of certificate distribution and storage, but presents a significant challenge to system

designers, particularly in the embedded case where access to Internet resources may be

severely limited.

2.2 Features of Trust Management Systems

This section both describes and discusses a number of features relevant to many trust man-

agement systems and comments on their potential applicability to embedded systems. This

is not intended to be an exhaustive listing, but rather to provide a focus on features that are

generally considered important for trust management applications.

24

2.2.1 Formal Foundation

Since authorization systems are used in security-sensitive contexts, mathematically precise

descriptions of their behavior and formal assurances of their correctness is essential. A

variety of formalisms serve as effective foundations for the definition of trust management

authorization semantics. The formalisms used can be divided into three main categories:

logics, database formalisms, and graph theory.

In the case of trust management systems based on logic, the authorization problem is

expressed in terms of finding a proof of a particular formula representing successful re-

source access, with the policy represented as a collection of suitable axioms. Credentials

relevant to a particular decision become additional hypotheses to be used in the proof. Trust

management systems based on database formalisms (e.g., relational algebra) see the autho-

rization decision as a query against a distributed database. The certificates issued by a prin-

cipal contain, in effect, tuples from relations that a principal controls. Trust management

systems based on graph theory define the authorization decision in terms of finding a path

through a graph. The request is represented by a particular node in the graph. Principals

are also graph nodes and the certificates they issue denote edges.

It is not unusual for a particular trust management system tobe described by more than

one formalism. In fact, some aspects of trust management aremore naturally expressed

using one formalism or another. Also, Datalog serves as botha database formalism and a

programming logic, and several trust management systems, includingRT0 that is used in

this work, have been specified in Datalog (Li and Mitchell 2003a).

2.2.2 Authorization Procedure. Authorization Complexity

Trust management systems differ in exactly how the authorization decision is implemented.

In a broad sense this is due to differences in the way the systems are described; systems

25

using the same style of formalization tend to use similar authorization procedures. This is

particularly evident among the systems using programming logics such as Datalog as both

their formal foundation and implementation. However, somevariations between systems

result in significant differences in how authorization is computed even when the underlying

formalism is the same, for example, if certificate revocation is present in one system but

not another. In some cases no authorization procedure is given; the details of computing

authorization is entirely left to the implementers.

The computational complexity of the authorization decision is clearly of practical inter-

est, especially to developers of resource constrained systems. Ideally, authorization should

be decidable and tractable, but there is a trade off between the expressiveness of the certifi-

cate and policy language and the complexity of the authorization decision. For example,

the systems that use Datalog with constraints (DatalogC) can have various levels of com-

putational complexity depending on the constraint domain used (Li and Mitchell 2003a).

Yet even trust management systems with undecidable decision procedures can be poten-

tially useful; realistic policies may be decidable even if the general policy language is not.

Furthermore, practical implementations can time-out authorization decisions and return a

failed access indication in order to avoid problems with non-termination.

For constrained systems the resources required to make an authorization decision is a

matter of critical importance. Implementing a full Prolog or DatalogC interpreter in a small

embedded device would seem to be prohibitively difficult. However, choosing a system

that is sufficiently limited (while still allowing for sufficiently rich access policies) enables

various optimizations that can bring the implementation cost into a reasonable range. This

was a major factor in choosingRT0 for the work described here.

26

2.2.3 Public Key Infrastructure (PKI)

It is common for trust management systems to treat keys directly as principals. This creates

a conceptually clean design. In contrast, some systems regard the human or machine par-

ticipants as the principals and encode a relationship between principals and the keys that

identify them. In the former case, key bindings are not represented in the authorization

semantics, whereas in the latter case they are. Although PKIs underpin the implementation

of trust management systems, the question here is: to what extent does a particular trust

management system directly concern itself with the detailsof key management?

2.2.4 Threshold and Separation of Duty Policies

Many systems support threshold policies, where at leastk out of a set ofn entities must

agree on some point in order to grant access. Threshold policies are appealing since agree-

ment provides confidence in situations wherein no single authority is trusted by itself. The

concept of separation of duty is related to threshold policies. In the case of a separation of

duty policy, entities from different sets must agree beforeaccess is granted.

As an example, a bank might require that two different cashiers approve a withdrawal

(same set—threshold policy). The bank might also require that a cashier and a manager,

who are not the same person, approve a loan (different sets—separation of duty policy).

In general threshold policies and separation of duty policies cannot be implemented in

terms of each other, although some trust management systemsprovide support for both

(Li, Mitchell, and Winsborough 2002).

2.2.5 Local Name Spaces

It is desirable for trust management systems to allow each administrative domain to manage

its own name space independently. Requiring that names be globally unique is problematic

27

and, in general, infeasible. Although there have been attempts at creating a global name

space (International Telecommunications Union 2001), these attempts have at best only

been partially successful. The ability to reference non-local name spaces is also a keystone

of modern trust management, in that it allows local policy toconsider requesters that may

not be directly known to the local system.

2.2.6 Role-Based Access Control

In a large system with many principals it is often convenientto use role based access control

(RBAC) (Ferraiolo and Kuhn 1992; Sandhu, Coyne, Feinstein, and Youman 1996). In such

a systemrolesare used to associate a group of principals to a set of permissions. The use of

roles simplifies administration since the permissions granted to a potentially large group of

principals are defined in a single place. RBAC is a conceptualfoundation of many modern

authorization technologies.

Some trust management systems support RBAC by casting the access control decision

as a role membership decision. Access will be granted if the requester is a member of

an appropriate role but the precise meaning of the roles, in terms of the permissions that

are connected to them, is defined outside the trust management environment. In contrast

some trust management systems include a mechanism in their policy language to define

permissions explicitly. In these systems the access control decision is directly rendered for

a particular permission. Finally, in some cases roles are not provided directly but can be

simulated by assigning an appropriate interpretation to suitable objects within the system.

2.2.7 Delegation of Rights

All trust management systems allow an authorizer to delegate authority. In other words, an

authorizer can specify third parties that have the authority to certify particular attributes.

28

This is one of the defining characteristics of a trust management system. However, in many

applications a requester will also want to delegate some or all of his or her rights to an

intermediary who will act on that requester’s behalf.

Delegation of rights is important in a distributed environment. For example, a request

may be made to an organization’s front end system that accesses internal servers where

the request is ultimately processed. The classic three-tier architecture of web applications

follows this approach. In many environments the back end servers may have their own

access control requirements, in which case the requester will need to delegate his or her

rights to the front end system for use when making requests tothe internal servers.

Trust management systems differ in their support for rightsdelegation. Delegation

credentials may be formally provided, or delegation can be simulated via more primitive

forms. Also, delegationdepthcan be modulated in some systems—rather than being purely

transitive, delegation of rights may only be allowed to be transferred between fixedn prin-

cipals. In some cases rights can be delegated arbitrarily ornot at all. A system that has this

latter feature is said to support boolean delegation depth.

2.2.8 Certificate Validity

Since an authorizer receives certificates from unknown and potentially untrustworthy en-

tities, the validity of those certificates must be checked. Usually, signatures must be ver-

ified and the certificate must not have expired, since in practice certificates will almost

always have a finite lifetime in order to ensure that obsoleteinformation cannot circu-

late indefinitely. In some systems certificate validity is explicitly treated as part of the

structure of the trust management authorization semantics—the componentL described in

subsection 2.1.1. In such cases certificate lifetimes can be directly represented in creden-

tials and taken into account in policy (Bauer, Schneider, and Felten 2002; Li and Feigen-

29

baum 2002; Skalka, Wang, and Chapin 2007).

In other systems, certificate validity is defined externallyand checked as part of the

translation of certificates into credentials—the component TC—and not formally reflected

in the authorization semantics (Ellison, Frantz, Lampson, Rivest, Thomas, and Ylonen

1999). Note that it is a topic of debate whether authorizers (Rivest 1998a) or certificate au-

thorities (McDaniel and Rubin 2001) should determine validity intervals for authorization

decisions.

2.2.9 Credential Negation

Policy languages sometimes allow policy makers to specify that a credentialnot be held.

For example, access to a resource may require that requesters not possess a credential en-

dowing them with a felon role. In systems using logic as a foundation for the semantics of

authorization, this is expressed as credential negation. That is, authorization is predicated

on the negation of a role attribute expressed as a credential. Note that this makes the seman-

tics nonmonotonic—as more credentials (facts) are added tothe system, it is possible that

fewer authorizations succeed. As noted in (Seamons, Winslett, Yu, Smith, Child, Jacobson,

Mills, and Yu 2002), this makes credential negation a generally undesirable feature, since

nonmonotonic systems are potentially unsound in practice.For instance, if a certificate is

not discovered due to a network failure, access might be granted that would otherwise have

been denied. In the embedded environments considered here,this is a major concern.

Monotonicity also allows undecidable (or intractable) authorization logics to be used

safely. An authorizer could simply abort an excessively long running computation and deny

access. While this approach might prevent some legitimate requests from succeeding, in a

monotonic system it remains sound since it would never grantaccess inappropriately.

30

2.2.10 Certificate Revocation

Certificate revocation is similar to credential negation, but allows previously granted ac-

cess rights to be explicitly eliminated (Rivest 1998a). Like certificate validity, this can be

implemented in the translationTC from certificates to credentials. For example, in SPKI/S-

DSI (Ellison, Frantz, Lampson, Rivest, Thomas, and Ylonen 1999) online revocation lists

can be defined that filter out revoked certificates prior to conversion to credentials for the

authorization decision. At first glance it may appear that certificate revocation entails non-

monotonicity. However, it has been demonstrated that certificate revocation can be encoded

monotonically in both the Proof Carrying Authorization framework (Bauer, Schneider, and

Felten 2002) and a logic-based PKI infrastructure (Li and Feigenbaum 2002). The tech-

nique points out a relation between certificate revocation and certificate validity, in that

monotonic revocation can be based on lifetimes and the requirement to renew certificates.

Various high-level approaches to, and nuances of, certificate revocation are discussed in

(Rivest 1998a).

2.2.11 Distributed Certificate Chain Discovery

Where do certificates for a particular access request come from? In common scenarios the

requester presents all relevant certificates when requesting access. It is also easy to imagine

settings in which authorizers maintain local databases of certificates. In fact, these are the

scenarios that are assumed in this work.

More generally, however, certificates could be stored anywhere in the network, as long

as the local system has some way of finding them. Of course, given the potentially enor-

mous number of certificates on the network, it is necessary todefine some means of selec-

tively retrieving only certificates that might pertain to a particular authorization decision.

Formally well founded techniques for doing distributed certificate chain discovery have

31

been described in (Li, Winsborough, and Mitchell 2003; Gunter and Jim 2000b).

2.3 Foundations of Authorization

This dissertation’s focus is specifically on trust management systems that use a program-

ming logic as their formal foundation. This approach has theadvantage that a specification

of the system’s semantics can also serve, in principle, as its implementation. In addition,

programming logics such as Prolog and Datalog are a well studied and well understood

formalism.

Programming logics provide useful abstractions for authorization semantics. They have

served as target languages for the compilation of higher-level authorization languages (Li

and Mitchell 2003a; Woo and Lam 1993), as well as the foundation for enriched autho-

rization languages (Li and Mitchell 2006; Jim 2001; DeTreville 2002; Li, Mitchell, and

Winsborough 2002; Li, Grosof, and Feigenbaum 2003), and have been used for the formal-

ization and study of trust management systems (Li and Mitchell 2006; Polakow and Skalka

2006).

Both Prolog and Datalog areHorn-Clauselogics, in which all formulae are restricted

to the formhead← body, where← is a right-to-left implication symbol,headis a propo-

sition, andbodyis a conjunction of propositions. If variablesX appear in a rule, the rule

is implicitly universally quantified over those variables.The head of each rule is the con-

sequent of the body. Ifbodyis empty then the rule is afact.

As a simple example of how logics can apply in a trust management framework, imag-

ine that delegation should be transitive. Suppose thatdelegation(X, Y) is defined to mean

that the rights ofX have been delegated toY . Suppose also thatcert(X, Y) represents

a delegation certificate passing rights directly fromX to Y . The following Horn clauses

32

obtain transitivity of delegation:

delegation(X, Y)← cert(X, Y) delegation(X, Y)← cert(X,Z), delegation(Z, Y)

Letting a, b, c, ... denote constants, the following represents a collection ofdelegation cer-

tificates:

cert(a, b) cert(b, c) cert(b, d) cert(c, e)

From these facts and the definition ofdelegation, the querydelegation(a, e) will succeed

while delegation(d, e) fails.

Datalog was developed as a query language for databases. It is not a full programming

language. In contrast Prolog is Turing complete and thus more expressive than Datalog.

This extra expressivity is useful in certain contexts. For example, a full-featured authoriza-

tion logic called Delegation Logic has been defined as a strict extension of Datalog at a

high level, that is ultimately compiled to Prolog for practical implementation (Li, Grosof,

and Feigenbaum 2003).

Nevertheless, Datalog has certain advantages in the authorization setting: the combi-

nation of monotonicity, a bottom-up proof strategy, and Datalog’s safety condition(any

variable appearing in the head of a rule must also appear in the body) guarantee program

termination in polynomial time. In contrast, Prolog’s top-down proof search can cause

non-termination in the presence of cyclic dependencies. For example, if we added the cer-

tificate cert(e, b) to the above fact set, some queries would not terminate. Thisproblem

is resolved bytabling as in XSB (XSB Inc. 2006), but it has been argued that this solu-

tion adds too much size and complexity to the implementationfor authorization decisions

in general (Li, Mitchell, and Winsborough 2002), and for embedded systems particularly.

And while Datalog is not capable of expressing structured data, Datalog with constraints

(DatalogC), a restricted form of constraint logic programming (Jaffar and Maher 1994), has

33

been shown sufficiently expressive for a wide range of trust management idioms (Li and

Mitchell 2003a).

2.4 The RT Trust Management System

This section provides a detailed review of theRT family of trust management systems (Li,

Mitchell, and Winsborough 2002). Focus is onRT because it is the trust management

system used in the demonstration applications. Although the choice ofRT was largely

arbitrary, it offers an effective combination of expressivity, ease of use, and efficient imple-

mentability. AlsoRT has a strong formal foundation based on Datalog and its variants.

RT is actually a trust management framework and not a single trust management sys-

tem. The systems in theRT framework have varying expressiveness and complexity (Li,

Mitchell, and Winsborough 2002; Li, Winsborough, and Mitchell 2003; Li and Mitchell

2003b). RT stands for “role based trust management” because it uses policy and credential

statements to associate principals, calledentitiesin theRT literature, to roles. The signif-

icance of the roles is defined externally. The base system,RT0, provides credential forms

for simple role membership as well as indirection roles and intersection roles as described

below.

RT1 is an extension ofRT0 providing parameterized roles.RTC
1 further extendsRT1

to allow for the description of structured resources (Li and Mitchell 2003a; Li and Mitchell

2003b). The systemRTD provides a mechanism to describe the delegation of rights and

role activations, andRT T provides support for threshold and separation of duty policies.

RT T andRTD can be used in combination withRT0, RT1, or RTC
1 to create trust man-

agement systems such asRT T
0 , RT TD

1 , and so forth. A rich complexity analysis has also

been developed for theRT framework for problems beyond simple authorization, e.g.,role

inclusion and role membership bounds (Li, Mitchell, and Winsborough 2005).

34

2.4.1 Features

TheRT framework represents entities as public keys and does not attempt to formalize the

connection between a key and an identity. TheRT framework allows each entity to define

roles in a name space that is local to that entity. An authorizer is expected to associate

permissions with a particular role; to access a resource a requester must prove membership

in the role. In this way theRT framework provides role based access control, but it does

not deal with permissions directly in the trust management logic.

To define a role, an entity issues credentials specifying therole’s membership. Some

of these credentials may be a part of private policy, others may be signed by the issuer and

made publicly available as certificates. The overall membership of a role is taken as the

union of the memberships specified by all the defining credentials.

Let A,B,C, . . . range over entities and letr, s, t, . . . range over role names. A roler

local to an entityA is denoted byA.r. RT0 credentials are of the formA.r ←− f , wheref

can take on one of four forms to obtain one of four credential types:

1. A.r ←− E

This form asserts that entityE is a member of roleA.r.

2. A.r ←− B .s

This form asserts that all members of roleB.s are members of roleA.r. Credentials

of this form can be used to delegate authority over the membership of a role to another

entity.

3. A.r ←− B .s .t

This form asserts that for each memberE of B.s, all members of roleE.t are mem-

bers of roleA.r. Credentials of this form can be used to delegate authority over the

35

membership of a role to all entities that have the attribute represented byB.s. The

expressionB.s.t is called alinked role.

4. A.r ←− f1 ∩ · · · ∩ fn

This form asserts that each entity that is a member of all roles f1, . . . , fn is also a

member of roleA.r. The expressionf1 ∩ · · · ∩ fn is called anintersection role.

For all credential formsA.r ←− f , the principalA is called theissuerof the credential.

A credential is transformed into a certificate when it is signed by the issuer’s private key.

Recall that the entities are represented by their public keys directly, i.e., theA andE in

A.r ←− E are public keys.

RT1 enhancesRT0 by allowing roles to be parameterized. For example, the second

credential form above is extended toA.r(h1 , h2 , . . . , hn) ←− B .s(k1 , k2 , . . . , km) where

thehi andkj are parameters. Role parameters are typed and can be integers, floating point

values, dates and times, enumerations, or finite sets or ranges of these datatypes. AnRT1

credential iswell formedif the parameters given to the roles have the right type and ifeach

variable in the credential appears in the body of that credential.

As an example of anRT1 credential (Li, Mitchell, and Winsborough 2002), suppose

companyA has a policy that the manager of an entity also evaluates thatentity. This can

be expressed inRT1 using a policy statement such as

A.evaluatorOf (?Y)←− A.managerOf (?Y)

This policy can’t be feasibly expressed inRT0 because the role parameters might take on

an arbitrarily large number of values. InRT0 individual credentials would be needed for

each possible value of the role parameter.

RTC
1 further enhances the expressive power ofRT1 by allowing structured constraints

to be applied to role parameters. In addition the restriction on variables only appearing in

36

the body of a rule is lifted (Li and Mitchell 2003a; Li and Mitchell 2003b). For example,

suppose a hostH wishes to grant access to a particular range of TCP ports to those entities

that are employed by the information technology department. The host might have as its

local policy:

Host .p(port ∈ [1024 ..2048])←− IT .employee

This example assumes that an entity is granted access to a particular TCP port if that entity

is a member of theHost .p role with the port specified as a parameter.

To accommodate threshold structures, representing agreement between a group of prin-

cipals, the systemRT T interprets roles as sets of sets of entities, calledprincipal sets.

These principal sets can be combined with role product operators⊙ and⊗.

New credential forms are as follows:

1. A.r ←− B1 .r1 ⊙ B2 .r2 ⊙ · · · ⊙ Bk .rk

Each principal setp ∈ A.r is formed byp = p1 ∪ · · · ∪ pk where eachpi ∈ Bi.ri for

1 ≤ i ≤ k.

2. A.r ←− B1 .r1 ⊗ B2 .r2 ⊗ · · · ⊗ Bk .rk

Each principal setp ∈ A.r is formed byp = p1 ∪ · · · ∪ pk wherepi ∩ pj = ∅ for all

i 6= j andpi ∈ Bi.ri for 1 ≤ i ≤ k.

The features introduced byRT T allow threshold policies and separation of duty policies

to be written (Li, Mitchell, and Winsborough 2002).

RTD adds the concepts of role activations and delegations toRT0, via the delegation

credential formA
C as D.r
−→ B. In this caseA delegates toB therole activationof C as D.r.

Empowered with this role activationB can then access whatever facilitiesC can access

from roleD.r. This presupposes thatA has been delegated the activationC as D.r, which

37

holds whenA = C andA is a member of roleD.r in the basic case. Hence, delegated acti-

vations don’t carry any authority unless there is a chain of delegation credentials where the

credential at the head of the chain was issued by the entity mentioned in the role activation.

While the originalRT framework does not support revocation in its policy language,

it is proposed to incorporate revocation (Li, Mitchell, and Winsborough 2002) by lever-

aging a monotonic approach developed in (Li and Feigenbaum 2002) based on certificate

lifetimes. While lifetimes and the requirement for freshness are encoded logically, the pro-

posal suggests the use of external certificate revocation lists to implement verification; this

is an interesting example of the possible interplay betweenthe semantics of authorization

per se and components external to them.

A variant of theRT framework has been developed that associates risk values with

credentials (Skalka, Wang, and Chapin 2007). These risks are tracked through the autho-

rization process so that the role membership is parameterized by the total membership risk.

The set of risks and their ordering is left abstract, and can be specialized to a number of

applications, e.g., risk can be defined as remaining certificate lifetime, so that role mem-

bership is parameterized by the minimal lifetime of certificates used for authorization.

Finally RT+0 extendsRT0 by adding an integer delegation depth control to most cre-

dential forms (Hong, Zhu, and Wang 2005), a capability thatRT0 lacks.RT+0 delegation

depths limit the delegation of authority by tracking the number of namespaces (administra-

tive domains) such delegations cross. Delegation depth is also allowed to be unlimited, in

which caseRT+0 degenerates toRT0.

Although the work presented in this dissertation made use ofRT0 exclusively, sup-

porting more advanced variations of theRT framework, or indeed other trust management

systems entirely, would be an interesting avenue for futuredevelopment.

38

2.4.2 Example

Suppose Alice is a cancer patient at a hospital being treatedby Bob, a doctor. Alice grants

Bob access to her medical records and also allows Bob to delegate such access to others as

he sees fit.

Bob defines his team as a particular collection of individuals together with the people

supporting them. A person supporting one of Bob’s team members becomes a team mem-

ber herself, so Bob’s definition is open ended and can potentially refer to a large number of

people he does not know directly. Here we assume that Bob’s team includes both medical

and non-medical personnel, e.g., other doctors as well as receptionists. Once his team is

defined, Bob then delegates his access to Alice’s medical records to only the medical staff

on his team and not the administrative staff.

Suppose further that Bob consults with another doctor, Carol, on Alice’s condition. Bob

modifies his policy to add Carol temporarily to his team. Carol orders some blood tests that

are then analyzed by Dave, a lab technician and one of Carol’ssupport people. The policy

is intended to allow Dave to access Alice’s medical records so that he may, for instance,

input the blood test results.

Dave signs the test results when he uploads them to the hospital database. He also

includes appropriate credentials so that the database willauthorize his access. These cre-

dentials must include

• Bob has delegated his access to Alice’s medical records to people on his team who

are members of the medical staff.

• Carol is on Bob’s team.

• If someone is on Bob’s team, than any person on their support staff is also on Bob’s

team.

39

• Dave is one of Carol’s support people.

• Dave is a member of the hospital’s medical staff.

On the basis of these relations, one may deduce that Dave has access to Alice’s medical

records.

Complex access control scenarios such as this are difficult to express using traditional

methods. Neither Alice nor Bob realize that Dave needs to be granted access to Alice’s

medical records. Although Dave’s role as one of Carol’s support people might be enough

to grant him access to the records of Carol’s patients, Dave’s relationship to Bob, and hence

to Alice, is indirect; it is Bob’s act of adding Carol to his team that causes Dave to gain

access to Alice’s records. Observe also that Bob’s team policy is recursive. A primary

purpose of trust management systems is to provide language features and authorization

semantics that support such complex policies.

To express this example usingRT only the facilities ofRT0 are necessary. This shows

that even the simplest member of theRT family can be used to express interesting policy

statements. Alice defines a rolerecords whose members are able to access her medical

records. She creates the policy

• Alice.records ← Bob

• Alice.records ← Bob.alice delegates

The first rule grants her doctor, Bob, access to her records. The second rule allows Bob

to further delegate that access by defining the membership ofanalice delegates role.

Bob’s standing policy is

• Bob.team ← Bob.team.support

• Bob.alice delegates ← Hospital.medical staff ∩ Bob.team

40

The first rule defines Bob’s team as including all the support personnel specified by the

members of his team. In the second rule, Bob uses an intersection role to specify that only

the medical personnel on his team should have access to Alice’s medical records.

When Bob consults with Carol he addsBob.team ← Carol to his policy to add

Carol, and indirectly all of Carol’s support people, to his team.

The only part of Carol’s policy relevant to this example places Dave in hersupport

role: Carol.support ← Dave. Finally Dave has a credential from the hospital as-

serting his membership in themedical staff role. RT0 can use these credentials to

prove that Dave is a member ofAlice.records and thus able to access Alice’s medical

records.

2.4.3 Semantics

The original formal semantics ofRT is based on Datalog (Li, Mitchell, and Winsborough

2002). Specifically eachRT credential is translated into a Datalog rule. The meaning ofa

collection ofRT credentials is defined in terms of the minimum model of the corresponding

Datalog program. In the case of theRTC
1 , Datalog with constraints is used (Li and Mitchell

2003a).

The translation fromRT0 to Datalog requires only a single predicateisMemberto as-

sert when a particular entity is a member of a particular role. The translation rules are

shown below where Datalog variables are shown prefixed with ‘?’ to distinguish them

from constants.

1. A.r ←− E

isMember(E,A, r).

2. A.r ←− B .s

41

isMember(?x, A, r)← isMember(?x, B, s).

3. A.r ←− B .s .t

isMember(?x, A, r)← isMember(?y, B, s), isMember(?x, ?y, t).

4. A.r ←− B1 .s1 ∩ · · · ∩ Bn .sn

isMember(?x, A, r)← isMember(?x, B1, s1), . . . , isMember(?x, Bn, sn).

The authorizer associates a permission with a particular role, sayA.g, named thegov-

erning role. Access is granted toE if and only if the Datalog queryisMember(E,A, g)

succeeds.

An alternative set-theory semantics has also been defined for RT0 (Li, Winsborough,

and Mitchell 2003). In this semantics each roleA.r is represented as a set of entities

rmem(A.r) that are members of that role. For a given set of credentialsC these sets are the

least sets satisfying the set of inequalities

{rmem(A.r) ⊇ expr[rmem](e) |A.r ←− e ∈ C}

where expr[rmem](e) is the set of entities in a particular role expressione. A role expression

includes both linked roles and intersection roles. In particular:

expr[rmem](B) = {B}

expr[rmem](A.r) = rmem(A.r)

expr[rmem](A.r1.r2) =
⋃

B∈ rmem(A.r1)

rmem(B.r2)

expr[rmem](f1 ∩ · · · ∩ fk) =
⋂

1≤j≤k

expr[rmem](fj)

The set-theory semantics forRT0 was developed primarily to provide theoretical sup-

port for a distributed credential chain discovery algorithm (Li, Winsborough, and Mitchell

2003). The set-theory semantics facilitate proving soundness and completeness of that

algorithm.

42

2.4.4 Implementation

Li et al. describe an implementation strategy forRT0 in terms of a construct called a cre-

dential graphGC (Li, Winsborough, and Mitchell 2003). Each node inGC represents a

role expression with directed edges corresponding to each credential. In addition,derived

edgesare added to represent the indirect relationships between roles that are introduced by

linked roles and intersections. An entity is a member of a role if, and only if, there exists

a path from the entity to the role inGC. Li et al. prove that credential graphs are sound and

complete with respect to the set-theory semantics ofRT0.

In addition Li et al. describe a distributed credential chain discovery algorithm that finds

a path inGC given initially incomplete credentials (Li, Winsborough, and Mitchell 2003).

The algorithm assumes that either the issuer or subject of a credential can be contacted

on-line and queried for more credentials on demand, an assumption that may not be true in

an embedded systems context.

The most straightforward implementation ofRT0 is to simply compute the minimum

model of the Datalog program implied by the union of policy statements and credentials

provided by the requester. This can be done by updating role memberships repeatedly until

a fixed point is reached, a process that is guaranteed to terminate in time polynomial in the

total number of credentials (Li and Mitchell 2003a).

43

Chapter 3

SpartanRPC and Sprocket

This chapter describes SpartanRPC (Chapin and Skalka 2010; Chapin and Skalka 2013)

and its implementation in the Sprocket compiler (Chapin 2013b).

SpartanRPC is a dialect of nesC that provides built-in support for authorized remote

procedure calls. SpartanRPC as a language allows potentially many different forms of ac-

cess control to be used, however Sprocket currently only supports the use of theRT0 trust

management system. Sprocket also uses radio links to implement dynamic wires(as de-

scribed insection 3.4) and thus targets TinyOS and wireless sensor networks. However,

there is nothing in the design of SpartanRPC that would preclude the use of other commu-

nications channels.

The use of a trust management system allows embedded developers to specify high

level authorization policies that permit different security domains to interact without prior

introduction. In a sensor network context this might arise when, for example, the wearer

of a body area network enters a region of space covered by a metropolitan network. These

networks may have never encountered each other, yet wish to access sensitive functions,

such as for medical monitoring and control.

Trust management systems use public key cryptography and require some mechanism

44

for evaluating authorization requests in the light of an access policy (theL in Figure 2.1).

Although the feasibility of using public key cryptography on sensor nodes has been shown

by several authors (Gupta, Millard, Fung, Zhu, Gura, Eberle, and Shantz 2005; Malan,

Welsh, and Smith 2008; Bertoni, Breveglieri, and Venturi 2006; Kumar and Paar 2006; Lee,

Sakiyama, Batina, and Verbauwhede 2008; Liu and Ning 2008; Szczechowiak, Oliveira,

Scott, Collier, and Dahab 2008), combining this with the necessary authorization decision

to support a full trust management system, and showing the feasibility and practicality of

doing so on resource constrained devices, has not been previously demonstrated. As will be

shown inchapter 6the Sprocket runtime system exacts a significant performance penalty

on the nodes, particularly with respect to system startup time. Yet despite this problem

useful work can still be accomplished.

3.1 Overview and Applications

The SpartanRPC language allows network administrators to defineRT0 policies that me-

diate access to specified resources on network nodes. In SpartanRPC a resource is user-

defined functionality programmed in an extension of nesC, and accessible in RPC style

by client code programmed in the same extension of nesC. Thus, while previous systems

have explored the problem of establishing multiple security domains in a wireless sensor

network (Claycomb and Shin 2011), and others have considered RPCs in sensor networks

(May, Dunning, Dowding, and Hallstrom 2007; Bergstrom and Pandey 2007; Reinhardt,

Mogre, and Steinmetz 2011), SpartanRPC provides a readily-accessible mechanism that

combines these features. Furthermore, SpartanRPC’s use ofRT0 allows specification of

fine-grained, decentralized security policies.

In addition to the first responder application described inchapter 1, various other po-

tential applications of SpartanRPC exist. For example, time synchronization is another

45

important sensor network function that is security sensitive, since many higher-level proto-

cols rely on it. A number of previous authors have consideredsecure time synchronization

in the presence of “insider” attacks (Manzo, Roosta, and Sastry 2005; Ganeriwal, Pöpper,

Čapkun, and Srivastava 2008), whereby nodes within the network may be compromised

and function as malicious actors capable of corrupting the protocol.

In particular, the FTSP protocol can be attacked by a single compromised “root” node

injecting false timing information into the network (Manzo, Roosta, and Sastry 2005),

even when symmetric keys are used for secure information exchange. However, the threat

model in this work treats all nodes in a network as equally compromisable. In cases where

a connected sub-component of a network running an FTSP protocol is more resistant to

compromise, due to, e.g., the use of tamper-proof hardware,a policy can be established

whereby only nodes in the most tamper-resistant sub-component of the network may func-

tion as roots. FTSP time sync updates on any given node can be defined to require a root

authorization level. This implies that nodes requiring secure time synchronization must be

at most a single radio hop from a root node, but nodes willing to accept possibly corrupted

time sync data can extend the network indefinitely. Note thatin this scenario, SpartanRPC

policies adapt to heterogeneity in network device hardware, vs. network administration as

in the first responder example inchapter 1.

Other potential applications of this system include securerouting protocols in hetero-

geneous trust environments (Karlof and Wagner 2003), transport and network layer proto-

cols (Perillo and Heinzelman 2005), tracking protocols (Brooks, Ramanathan, and Sayeed

2003), and even node-based web servers supporting secure channels (Gupta, Millard, Fung,

Zhu, Gura, Eberle, and Shantz 2005).

46

3.2 Technical Foundations

Language-Based Security. SpartanRPC provides language-level abstractions for defin-

ing remote services and associated security policies. Programmers are presented with an

extension of nesC, with new features for defining remote access controlled services, and for

invoking those services securely. This hides the implementation details of the underlying

security protocols and only requires mastery ofRT0, a simple authorization logic. Spartan-

RPC programs are compiled in the same manner as nesC programs, in fact the SpartanRPC

compiler rewrites SpartanRPC programs to ordinary nesC code.

Asynchronous Remote Procedure Call. As other authors have observed (May, Dun-

ning, Dowding, and Hallstrom 2007), RPC is an appropriate abstraction for node services

on the network and supports whole-network (vs. node-specific) programming. Secure RPC

is well-studied in a traditional networking environment, and is a natural means of layering

security over a distributed communication abstraction.

It is necessary for RPC invocation in a wireless sensor network to be asynchronous,

since synchronous call-and-return to a remote node would significantly impede perfor-

mance in the best case and cause deadlock in the worst. In order to minimally impact

the nesC programming model, SpartanRPC defines RPC invocation as a form ofremote

task. Local tasks are units of programmer-defined asynchronous computation in nesC, so

treating remote computational services as remote tasks fitsthis paradigm. Remote tasks can

be invoked on one-hop neighbors, providing a link layer service on which network layer

services can be built.

PK-Based Authorization Policies. SpartanRPC provides language-level abstractions for

specifying RPC authorization policies. TheRT0 trust management system allows network

entities to communicate credentials for authorizing service invocations. In SpartanRPC

47

these credentials are implemented with ECC public keys (Bertoni, Breveglieri, and Venturi

2006), which are validated during the initial authorization phase. ECC is significantly more

tractable than RSA in a resource constrained setting. Furthermore, following an initial

authorization phase SpartanRPC protocol establishes a shared AES key for subsequent

invocations of a given service by the same node. Since hardware AES is available on

common radio chipsets, highly efficient performance for secure invocations is obtained

following authorization. This is demonstrated with empirical results reported inchapter 6.

3.3 Duties and Remotability

Because of the slow, unreliable nature of wireless communications it is unrealistic for RPC

services in wireless sensor networks to be synchronous. Instead, the semantics of tasks

are considered a more appropriate abstraction. They are notquite right however, as RPC

services will typically require arguments to be passed—a feature not provided by nesC

tasks—and while the poster of a task defines it, an RPC serviceinvokes remotely defined

functionality. SpartanRPC therefore defines a new RPC abstraction called aduty.

3.3.1 Syntax and Semantics

Duties are declared in nesC interfaces and syntactically resemble nesC command declara-

tions. Instead of using the reserved wordcommand the new reserved wordduty is used.

Duties are allowed to take parameters (with restrictions asdiscussed below) but must return

the typevoid. For example, the following interface describes an RPC service for remotely

controlling a collection of LEDs:

interface LEDControl {
duty void setLeds(uint8_t ctl);

}

48

module LEDControllerC {
provides remote interface LEDControl;

}
implementation {

duty void LEDControl.setLeds(uint8_t ctl) { ... }
}

module LoggerC {
uses interface LEDControl;

}
implementation {

void f() { ... post LEDControl.setLeds(42); }
}

Figure 3.1: Duty Implementation and Invocation Examples

Duties are defined in modules in a manner similar to the way tasks, commands, or events

are defined. The reserved wordduty is again used on the definition. Similar to commands

and events the name of the duty is qualified by the name of the interface in which it is

declared. Including a duty in an interface definition automatically implies that the interface

can be remotely invoked, or isremotablein the sense formalized insubsection 3.3.2. Any

remotable interface provided by a component must be specified asremote in its provides

specification. The first code sample inFigure 3.1shows anLEDControllerC compo-

nent that provides theLEDControl interface remotely, i.e., that allows remote nodes to

control LED status lights on a board.

A module on the client node that wishes to use a remote interface simply posts the duty

in the same manner as tasks are posted. The use ofpost emphasizes the asynchronous

nature of the invocation. An example duty posting is illustrated inFigure 3.1. The standard

component semantics of nesC provide a natural abstraction of “where” the RPC call goes,

just as a normal command invocation will go through a component interface that is discon-

nected from its implementation. Like a normal command invocation, configuration wirings

determine where duty control flows. However, in SpartanRPC duty invocation flows to a

49

component residing on a different node. The invoking modulemust be connected to the

remote modules by way of a dynamic wire as described insection 3.4.

When a duty is posted by a client it may run at some time in the future on the server

node. The client node continues at once without waiting for the duty to start, i.e., duty

postings are asynchronous in the same manner that tasks are.Once posted the client has no

direct way to determine the status of the duty. Also, due to the unreliability of the network a

posted duty may not run at all. The success or failure of a dutyposting is not signaled to the

client in the implementation just as, for example, the receipt or non-receipt of a message

send is not signaled in theAMSendprotocol in TinyOS. Hence any error semantics for

duty postings must be implemented by the application developer.

3.3.2 Remotable Interfaces

SpartanRPC imposes certain requirements on RPC service definitions for ease of imple-

mentation. First, since sensor network nodes do not share state passing nesC pointers to

duties is disallowed—such a reference would be meaninglesson the receiving node. Thus

remotable types are defined as follows:

Definition 3.3.1 A type isremotableif and only if it satisfies the following inductive defini-

tion: The nesC built-in arithmetic types, including enumeration types, are remotable, and

structures containing remotable types are remotable.

Since a remotable interface describes RPC services, such interfaces are required to declare

duties taking only arguments of remotable type; also, remotable interfaces can only contain

duties, to ensure meaningful remote usage.

Definition 3.3.2 An interface isremotableif and only if it contains only duties, and those

duties have argument types and return types that are remotable.

50

3.4 Dynamic Wires

In an ordinary nesC program the “wiring” between componentsas defined by configura-

tions is entirely static. The nesC compiler arranges for allconnections and at run time the

code invoked by each called command or signaled event is predetermined.

In a remote procedure call system for distributed embedded environments, especially

those communicating using radio links, this static arrangement is insufficient. A node

cannot, in general, know its neighbors at compilation time but rather must discover this

information after deployment. In addition, the volatilityof wireless links, and of the nodes

themselves, means that a given node’s set of neighbors will change over time. This section

discusses the facility in SpartanRPC to allowdynamic wiringsfor control flow from duty

invocation via remotable interfaces to duty implementation, wherein the programmer has

control over wiring endpoints and how they may change duringprogram execution.

3.4.1 Component IDs, Component Managers

The discussion begins with how remote components are identified for wiring. In order to

uniquely identify components on a network of devices, remotable components are specified

via a two-element structure called acomponent_id defined on the left side ofFigure 3.2.

The node_id member is the same node ID used by TinyOS and is set when the node

is programmed during deployment. The local ID member is an arbitrary value defined

by the programmer of the server node. Only components that are visible remotely need

to have ID values assigned, however, the ID values must be unique on the node. The

component_set structure defined on the right side ofFigure 3.2wraps an arbitrary

array ofcomponent_id values.

A component manageris a component that provides theComponentManager inter-

face defined at the bottom ofFigure 3.2. It dynamically specifies a set of component IDs

51

typedef struct {
uint16_t node_id;
uint8_t local_id;

} component_id;

typedef struct {
int count;
component_id * ids;

} component_set;

interface ComponentManager {
command component_set elements();

}

Figure 3.2: Component Manager Interface and Type Definitions

that ultimately serve as dynamic wiring endpoints.

As a simple example, consider the component managerRemoteSelectorC as shown

in Figure 3.3. This example component manager always returns a componentset containing

a single component. However, in general, multiple components on neighboring (one-hop)

nodes could be selected. Hence dynamic wires are inherentlya multi-cast communication

channel. In a more complex example the component manager would compute the compo-

nent set each time the dynamic wire is used, filling in an arrayof component IDs based on

information gathered earlier in the node’s lifetime.

3.4.2 Syntax and Semantics

In SpartanRPC the syntax and semantics of nesC is extended toallow the target of a con-

nection to be dynamically specified by a component manager. The syntax of wirings, or

connections, is extended as follows:

connection ::= endpoint ’->’ dynamic_endpoint
dynamic_endpoint ::= ’[’ IDENTIFIER ’]’ (’.’ IDENTIFIER)

Given a dynamic wiring of the formC.I ->[RC].I , its semantics are informally

summarized as follows. First,RC is statically required to be a component manager, and

52

module RemoteSelectorC {
provides interface ComponentManager;

}
implementation {

// 0xFFFF is the special broadcast address.
// Local component #1 on each node selected.
component_id broadcast = { 0xFFFF, 1 };
component_set broadcast_set = { 1, &broadcast };

command component_set ComponentManager.elements() {
return broadcast_set;

}
}

Figure 3.3: Example Component Manager

I must be remotable. At run time, if control flows across this wire via posting of some

duty I.d within C, the commandelements in RCis called to obtain a set of component

IDs. The dutiesI.d provided by those remote components will then be posted on the host

nodes via an underlying link layer communication, the details of which are hidden from the

SpartanRPC programmer. Thus, duties can only be posted on neighbors. Note that since

this call toelements may return more than one component ID, this is a sort of fan-out

wiring.

For example, theLoggerC component mentioned inFigure 3.1could be wired by the

programmer to LED controller components on a dynamically changing subset of neighbors

using a configuration such as:

LoggerC.LEDControl -> [RemoteSelectorC].LEDControl;

The server’s configuration does not need to wire anything to the remote interface ex-

plicitly.

53

3.4.3 Callbacks and First-Class IDs

It is assumed that the component IDs for well known services will be agreed upon ahead

of time by a social process outside of SpartanRPC. By broadcasting to a “well known”

component ID, a node can use services on neighboring nodes without knowing their node

IDs. The use of well known ID values is analogous to the use of well known TCP port

numbers to provide easily accessible Internet services.

If a node expects a reply from a service that it invokes, the invoking node must set up a

component with a suitable remote interface to receive the service’s result. In SpartanRPC

remote invocations can only transmit information in one direction. Bidirectional data flow

requires separate dynamic wires. This design provides a natural “split-phase” semantic

wherein the invoker of a service can continue executing while waiting for the result of that

service, a common idiom for nesC programming. For instance,a service might require

the client to provide the node ID and component ID of the component that will receive the

service result as arguments to the service invocation. The server could store those values

for use by a server-side component manager. It is permitted for a component to be its own

component manager making it easy for a service to return a result by posting the appropriate

duty.

For example, assume that the LED controller on the server returns the old state of the

LEDs whenever the LED value is changed. The server configuration would include an

appropriate dynamic wire as follows

LEDControllerC.LEDResult -> [LEDControllerC].LEDResult;

The client must provide the LEDResult interface remotely toreceive this result. In

this example theLEDControllerC component is its own component manager. This

makes it easy for theelements command to access global data that was recorded in-

sideLEDControllerC when the service it provides was previously invoked. This isa

54

common SpartanRPC idiom.

3.5 Security Policy Specification

This section discusses how to extend the language setting described previously with secu-

rity features. The goal is a language framework where RPC services require authorization

for use, and where authorization policies support collaboration between multiple social do-

mains. The authorization model can be viewed as a client-server interaction; respective

sides of the interaction protocol are summarized separately as follows.

3.5.1 RPC Server Side Logic

RPC service providers establish policy by assigning governing rolesA.g to remote interface

implementations. Service providers also possess a set of assumed credentialsC, which

establish an authorization environment including, perhaps (but not necessarily), the access

policy. As will be described in detail, the setC may grow as additional credentials are

communicated to servers. Finally, in the presence of security, client invocations of any

RPC service are not anonymous, but are performed on behalf ofsome entityB, which

must be a member of the governing roleA.g to use the protected service.

In summary, access to an RPC level is allowed if and only if thepropertyC ⊢ B ∈ A.g

holds, where:

• B is the identity of the RPC client.

• A.g is the governing role of the RPC service.

• C are the credentials known to the RPC server.

55

RPC service programmers specify governing roles as part of module definitions, specifi-

cally at remote interfaceprovides clauses. Hence, governing roles are associated with

interfaceimplementations, not interfaces themselves. This allows application flexibility,

in that the same interface can be implemented with various authorization levels within the

same network. Syntax is as follows:

provides remote interface I requires A.g

Note the minor modification to previously introduced syntaxfor remote module defini-

tions, via therequires keyword.

3.5.2 RPC Client Side Logic

In order to use a secure remote module, RPC clients wire to it as for unsecured modules (see

subsection 3.4.2), but with two additional capabilities: (1) the client specifies under what

RT entity the invocations will be performed, and (2) the clientmay also specify credentials

in their possession which are to be activated for use in the invocation. Syntax is as follows:

activate " C1, . . . , Cn" as " B" for C.I -> [M].J

For any invocation made through this wiring the credentialsC1, . . . , Cn will be remotely

added to the RPC server’s authorization environment for theauthorization decision, via a

process detailed insection 3.6. Note that these credentialsneed not establish authorization

entirely by themselves, rather they will beaddedto the server’s existing credentials, all of

which will be used in the authorization decision. A special form of theenable clause us-

ing " * " for the list of credentials is also supported. This form indicates that all credentials

known to the client should be communicated to the server.

Each node is deployed with a collection of ECC key pairs, one for each entity the

node represents. When an invocation is made the entityB mentioned in theas clause

56

of the dynamic wire is used in the request. Theas clause is optional; if it is omitted a

distinguisheddefault entityis used for the invocation.

3.5.3 Example

Suppose that an existing network deploymentNetA is imaged with a component called

SamplingRateC which provides a means to control sampling rates through an inter-

face such asSamplingRate . Further, since sampling rate modification is a sensitive

operation, the network administrators requireNetA.control authorization to use this

component:

module SamplingRateC {
provides remote
interface SamplingRate requires "NetA.control";

}

Any node supporting this component will transparently receive RT credentials from

neighboring nodes and attempt to use those credentials to establish that each client entity

is a member of theNetA.control role in the formal sense described above.

Suppose also that nodes inNetA are deployed with the credential

NetA.control ←WSNAdmin.control

Here the roleWSNAdmin.control is administered by some overarching network au-

thority. However, this authority need not be physically “present” in the network during

operation. Instead the credential above representsNetA ’s access control policy: any entity

blessed byWSNAdminas a controller can controlNetA .

Suppose further that another subnet, calledNetB , wishes to modify the sampling rate

of NetA . A node inNetB might be imaged with the following credentials, among possibly

others:

57

activate
"WSNAdmin.control <- NetB.control,

NetB.control <- NetB" as "NetB"
for

ClientC.SamplingRate -> [RemoteSelectorC].SamplingRate;

Figure 3.4: Security Enabled Dynamic Wire

WSNAdmin.control ← NetB.control (3.1)

NetB.control ← NetB (3.2)

Note that credential (1) is issued by theWSNAdminauthority, while credential (2) is

issued byNetB . Critically, direct communication withNetA authorities to obtain these

credentials is unnecessary.

In order to invoke this service the wiring as shown inFigure 3.4could be made on the

client side. Note the activation of the necessary credentials, as well as the specification of

client identity asNetB .

3.6 The SpartanRPC Implementation

This section describes the Sprocket implementation of the SpartanRPC system usingRT0

trust management for authorization. Sprocket rewrites a SpartanRPC program into a pure

nesC program and provides a supporting runtime system. Program rewriting converts re-

mote duty postings into a nesC messaging protocol. The main task of the runtime system

is to implement the encapsulated, underlying security protocols for authorization of remote

duty postings.

58

3.6.1 Authorization and Security Protocols

Sprocket implements SpartanRPC authorization using a combination of public and sym-

metric key cryptography. The TinyECC library (Liu and Ning 2008) was used for public

key functionality, and AES encryption for symmetric key functionality. TinyECC uses

elliptic curve cryptography for more efficient public key operations in sensor networks.

Using AES has the benefit of hardware support on many current embedded platforms, e.g.,

those employing the Chipcon CC2420 radio.

There are three security protocols for authorized duty postings, illustrated inFigure 3.5,

each operating asynchronously. First, a credential exchange protocol, whereinRT creden-

tials are communicated between nodes and authorization forvarious entities are computed,

i.e., theminimum modelas described insection 3.5. Second, a session key negotiation

protocol, where symmetric keys for multiple authorized service invocations between a

duty client and server are computed. And third, an authorized service invocation proto-

col, wherein duty posting requests are checked to ensure theappropriate authorizations.

This decomposition of authorized service invocation into three protocols supports effi-

ciency especially through the use of symmetric keys for multiple service invocations. Its

asynchronous nature is also appropriate in an asynchronousTinyOS setting.

Credential Exchange

SpartanRPC credentials are implemented as signed certificates. All SpartanRPC-enabled

nodes contain a certificate sender component and a certificate receiver component, to trans-

fer certificates between nodes and to verify them and interpret the credentials they rep-

resent. Both components run as background daemons. A SpartanRPC-enabled node is

deployed with a collection of certificates in read-only storage representing that node’s cre-

dentials, which are determined by some external means. Oncethe node is booted, the

59

Certificate

Sender

Certificate

Receiver

Session Key

Sender

Session Key

Receiver

Client Server

Node A Node B

Certificates

(Kcp, C, I)

(Ksp, C, I)

Post + MAC

Figure 3.5: SpartanRPC Security Protocol Elements

certificate sender starts a periodic timer. When the timer fires, the node link-layer broad-

casts (i.e., only to neighbors) all certificates in its certificate storage that are mentioned in

theenable clauses in its program. To prevent adjacent node certificatebroadcasts from

colliding, the certificate broadcast interval is modulatedrandomly by±10%. For example

if the nominal broadcast interval is one minute, the actual time varies randomly between

54 and 66 seconds.

The certificate distribution strategy is robust in the face of new nodes being added to the

network or intermittent radio connectivity. If a node failsto receive certain certificates from

its neighbors it will have another opportunity to do so when those neighbors rebroadcast

their certificates. There is a trade off between the broadcast interval, responsiveness, and

network energy consumption. A short broadcast interval allows authorizations to succeed

“quickly” since neighbors become aware of the necessary credentials early, but at the cost

of increased radio traffic and power consumption.

Once a newly received certificate has been verified, the credential it represents is ex-

tracted and stored. The credential storage also contains theRT0 minimum model implied

by the currently known collection of credentials. Each timea new credential is added to

60

A.r ← B.s ∩ C.t

4 A (40) r B (40) s C (40) t sig (42) chk (2)

Figure 3.6: Intersection Certificate Format (parenthesized numbers indicate byte counts)

storage, the minimum model is updated. This is done by repeatedly applying authorization

logic inference rules implied by the credentials to the current model until a fixed point is

reached, i.e., a logical closure (Li and Mitchell 2003a). Thus, each node maintains a local

view of authorization levels for network entities based on received credentials.

The certificate representation of anRT credential contains the public keys denoting

entities mentioned in the credential. Roles are identified by one byte numeric codes and

are scoped by the entity defining the role. Credential forms are distinguished by numbers

{1, 2, 3, 4}. Certificates are also signed by their issuing authority. Conveniently, the issuing

authority is always mentioned in a credential (e.g., the issuing authority ofA.r ←− B is

A) so the public key required to verify the certificate is always included with it for free.

This does not introduce a security problem. Since entities are identified directly by their

keys, an attacker who creates a new key is simply creating a new entity.

The over-the-air format for the intersection certificate isillustrated inFigure 3.6. The

other certificate forms are organized in a similar way. Certificates range in size from 124

bytes for the membership credential to 166 bytes for the intersection credential. This is

larger than the maximum payload size limit of TinyOS T-FrameActive Message packets as

transported by IEEE 802.15.4 (Society 2003; Hui, Levis, and Moss 2008). It is much larger

than the default maximum payload size of 28 bytes used by TinyOS (Levis). Consequently

the certificates are fragmented into four messages requiring a maximum payload size of 43

bytes. Notice that SpartanRPC limits intersection roles tojust two subroles and does not

allow an arbitrary number of subroles as described insection 2.4. This does not limit

expressivity because intermediate roles can be defined if necessary.

61

Message fragments are sent back to back with a 200 ms delay between each to allow the

receiver time to assemble them. Fragments are sent in order with no fragment identifiers.

To stay synchronized with the sender, receivers expect to receive all the fragments in a

timely manner. If a fragment is not received within 750 ms of the previous fragment, the

partial certificate is discarded on the assumption that the expected fragment was lost.

Verification ofRT certificates is the most computationally expensive component of the

system as discussed insubsection 6.2.2. Thus, it is important to minimize the amount of

effort spent on verification. To this end, a 16-bit Fletcher checksum is appended to each

certificate to ensure integrity over unreliable channels. Also, nodes maintain a database of

certificate checksums, to quickly check whether a certificate has already been received and

verified. Fletcher checksums are commonly used in sensor networks and other embedded

systems since their error detection properties are almost as good as CRCs with significantly

reduced software computational cost (Fletcher 1982).

Currently certificates carry no lifetime information and are considered to be valid for-

ever. This is not ideal since a certificate issuer may eventually change his/her policy but

currently has no way to revoke old certificates. However, adding a feature for certificate

revocation introduces non-monotonicity into the semantics of the authorization logic (Li

and Feigenbaum 2001; Rivest 1998b). Adding an expiration time to the certificates is more

logically appealing but would require nodes to support realtime services and some degree

of time synchronization. This is a non-trivial extension ofthe basic system that was beyond

the scope of this work.

Session Key Negotiation

Public key cryptography is much too computationally expensive to use for authorizing

routine duty postings. Sprocket’s run time system addresses this by negotiating session

keys between the client and server nodes.Figure 3.7shows the session key processing

62

architecture of a node.

Sender Receiver

SessionKeyStorage

Request Reply Reply Request

Figure 3.7: Session Key Processing Architecture

The client maintains a session key storage that is indexed bythe triple(N,C, I) where

N is the remote node ID,C is the remote component ID, andI is the remote interface ID. A

session key is thus created for each combination of these IDs. The server also maintains a

session key storage indexed by(N,C, I). In this caseN is the node ID of the client andC,

I are the component and interface IDs on the server to which that client is communicating.

Since any given node can be both server and client, each session key storage entry has a

flag to indicate the nature (client-side or server-side) of the session key.

The first time a client attempts to access a service on a particular server, it will send

a session key negotiation request as shown in the middle portion of Figure 3.5. When a

server receives a session key negotiation request message from a client nodeN containing

the public keyKcp of the requesting entity (as mentioned in theas clause of the dynamic

wire) and the(C, I) address of the desired service, the following steps are taken:

1. Authorization ofKcp for service(C, I) is checked using theRT minimum model

computed by the certificate receiver. If authorization fails nothing more is done.

2. A session key is computed using elliptic curve Diffie-Hellman key agreement and

added to the session key storage under the proper(N,C, I) value. The key is stored

as a remote client key.

3. A message is returned to the client containing the server’s public keyKsp and the

63

original (N,C, I) values used by the client. This is so the client is able to compute

the same session key and associate it with the proper endpoint from its perspective.

The session key negotiation protocol is a simple Diffie-Hellman key agreement proto-

col that combines the public key of the peer entity with the private key of the local entity.

The implementation does not include any nonces as would be done, for example, with the

ECMQV protocol (ISO 2008). As a result any renegotiated session keys between the same

entities would be identical. However, this is not a serious problem because the implemen-

tation does not currently renegotiate session keys anyway.Furthermore the ECMQV pro-

tocol entails three exchanged messages and additional computations and so would further

increase the burden on the nodes.

A potentially more serious concern is that the simple protocol described here would

normally be vulnerable to a man in the middle attack whereby an active attacker negotiates

independent session keys with each peer and is then able to modify messages sent between

those peers. However, in anRT trust management context this is not a concern because

authorization is entirely based on key rather than on any identity bound to that key. An

active man in the middle who creates a “bogus” key would simply be creating a new and

presummably unauthorizedRT entity.

The session key negotiation protocol described here alwayscomputes the same session

key between nodesNA andNB for the same requesting entity. This is also not a problem

since the server node uses(C, I) to look up the session key in its storage. IfNA previously

negotiated a session key withNB for service(C1, I1), an attempt byNA to use that session

key to access an unauthorized service(C2, I2) will fail because the server has no entry

for (NA, C2, I2) in its session key storage. In fact, this design creates an optimization

opportunity calledsession key stealingwhere, in the case of a successful authorization for

(C2, I2), a previously computed session key for(C1, I1) can simply be copied by the server

64

n args MAC
Interface ID

Duty ID

Node ID Component ID

n Components n Components
Figure 3.8: Duty Post Message

from (NA, C1, I1) to (NA, C2, I2) without being recomputed. However, at the time of this

writing Sprocket does not implement session key stealing.

Authorized RPC Invocations

Authorized RPC invocations are made using message authentication codes (MACs) on in-

vocation messages, created with AES session keys. Verification of a MAC for a particular

service on the receiver side constitutes authorization, since a session key for a particular

client and service is negotiated only after client credentials have been collected and verified

that establish the appropriate authorization for the service. Figure 3.8shows the format of

authorized invocation request messages.

Since invocation of an RPC service on multiple hosts can be made at once in a fan-out

wiring (seesection 3.4), a single invocation request message may apply to multipleservers

in the neighborhood of the client. To conserve bandwidth, fan-out invocation messages

include multiple MACs, since separate session keys are negotiated with each ofn servers,

allowing a single message to invoke the same service on the servers. If the duty arguments

consumed bytes of data, then invocation messages consume2 + n + d + 4n bytes. In

practice this puts significant restrictions on the amount ofdata that can be passed to duties.

As described above this implementation uses a 43 byte message payload for sending

certificate fragments. Experience suggests that using the same payload size for invocation

messages allows for reasonable values of bothd andn.

Alternatively an implementation could send multiple invocation messages with one for

65

each server, reducing the number of MACs required on each message to one. However,

that greatly increases radio traffic since the duty arguments and active message overhead

must be duplicated for each message.

To conserve space in the invocation messages, only a 32 bit MAC is used. Such a

small MAC would not normally be considered secure. However,wireless sensor networks

generate data so slowly that attacking even such a short MAC is not considered feasible

(Karlof, Sastry, and Wagner 2004; Luk, Mezzour, Perrig, and Gligor 2007). Nevertheless,

in other environments a larger MAC may be necessary further increasing message size.

Security Properties

It must be stressed that this scheme is intended to enforce authorization, which is achieved

via the protocols described above. Integrity is a side effect of this, since MACs are used

to enforce authorization, which are computed over completemessage payloads and are

verified by the receiver. Although confidentiality is not directly supported by the current

system, it could be easily added. In particular payloads could be encrypted using negotiated

session keys (payloads are currently sent as plaintext).

Sprocket does not provide any form of replay protection out of the box, but this can

be added at the application level. For example an application could pass a counter as an

additional duty argument. The server could verify that the count increases monotonically

as a simple form of replay protection. Delegating replay protection to the application is

appropriate since SpartanRPC is intended to be a low level infrastructure on which more

complex systems can be built. Furthermore the need for replay protection is likely to be

application specific.

Perhaps the most problematic vulnerability of this system is to denial of service attacks.

It is not clear how these could be mitigated without significant changes to the underlying

security protocols. For example, a constant flood of certificates over the correct active

66

message channel would place receiving nodes in a constant state of ECC digital signature

verification, potentially consuming large amounts of CPU time and energy. Mitigation

of such attacks is outside the scope of this work, but has beendiscussed in the literature

(Raymond and Midkiff 2008).

A note on multicast security. Fan-out wirings are a common idiom, and provide a form

of multicast communication. However, the use of MACs for security in a multicast setting

presents well-known challenges. In particular, whilen-way Diffie-Hellman can be used

to negotiate secret keys betweenn actors, such a scheme cannot be used in light of the

possibly heterogeneous authorization requirements anticipated. For instance, suppose a

nodeA fan-out wires to services on distinct nodesB andC, and suppose also thatA

is authorized fors on both nodes but thatB is not authorized fors onC and vice-versa.

If a single session key were negotiated betweenA, B, andC in this case, thenB could

make unauthorized use ofC ’s version ofs and vice-versa. While a variety of techniques

have been proposed to mitigate this problem (Canetti, Garay, Itkis, Micciancio, Naor, and

Pinkas 1999), most typically rely on very large multicast groups and arenot applicable in

a wireless sensor network setting. Thus, fan-out wirings use multiple, independent MACs

as described above.

3.6.2 Identifying Services Over the Air

RPC service endpoints are identified by the 4-tuple(N,C, I,D) whereN is the TinyOS

ID of the node on which a duty is implemented.C is the local component ID assigned to

each component that provides a remotable interface.I is an interface ID, required since a

component may provide more than one remotable interface. Interface IDs are component-

level unique. FinallyD is a duty ID, which must be interface-level unique.

In the current version of Sprocket,(C, I) values are assigned statically by an arbitrary

67

(automated or social) process. Sprocket accepts configuration files that define the associa-

tion between(C, I) values and the entities to which they refer. Duties are numbered in the

order in which they appear in their enclosing interface definitions.

Some RPC systems, such as ONC RPC, allow each node to provide aregistry of RPC

services available on that node (Srinivasan 1995). When a large number of RPC services

are provided by a node it becomes unreasonable to expect clients to have hard coded knowl-

edge of the endpoint identifiers for all those services. Instead clients communicate with the

single well known registry to obtain endpoint identifiers that were dynamically assigned.

In contrast it is assumed this configuration information is known a priori to all interacting

actors. It is unclear how many embedded systems could benefitfrom a more sophisticated

technique for defining and communicating endpoint identifiers, but it would be an interest-

ing topic for future work.

3.6.3 Rewriting SpartanRPC to nesC

Sprocket rewrites five major features from SpartanRPC to nesC: interface definitions, call

sites where remote services are invoked, duty definitions, dynamic wires, and server com-

ponents providing remote interfaces. Additionally, Sprocket generates a stub component

for each dynamic wire, and a skeleton component for each remote interface. Finally,

Sprocket generates configurations that wrap server components. The following summa-

rizes rewriting strategies for these features.

Interfaces, Call Sites, and Duty Definitions

Duty declarations in interfaces are rewritten to command declarations by substituting the

reserved wordcommand for the reserved wordduty. Since nesC commands are allowed

to have arbitrary parameters, duties with parameters present no complications. Sprocket

68

verifies that if an interface contains a duty, then the only declarations in that interface are

duties. Sprocket further verifies that the parameters of each duty, if any, conform to the

restrictions described insubsection 3.3.2.

Call sites where duties are posted are rewritten to command invocations by substituting

call for post. Only post operations applied to duties are rewritten in this way. Finally,

duty definitions are rewritten to command definitions by alsosubstitutingcommand for

duty.

Authorization Interfaces

The rewriting process makes use of two interfaces that mediate the interaction between the

Sprocket generated code and the security processing components of the run-time system.

Figure 3.9shows how a message, entering from the left, is extended withauthorization

information by the client and then passed to the server wherethe authorization information

is checked.

Client Authorizer Server Authorizer

AuthorizationClient

(interface)

AuthorizationServer

(interface)

ACNullC ACRT0C ASNullC ASRT0C

Figure 3.9: Client/Server Authorization Architecture

The AuthorizationClient interface abstracts the details of how an authorized

message is prepared before being sent. TheAuthorizationServer interface abstracts

the details of how authorized messages are processed after they are received. This design

allows for pluggable authorization mechanisms. Future versions of Sprocket could support,

in a modular fashion, other authorization schemes than those described here.

69

The authorization interfaces provide their services in a split-phase manner so that po-

tentially long-running authorization computations can beperformed while allowing the

node to continue other functions. In the current implementation, two kinds of authorization

are supported. On the client side the precise method used depends on the dynamic wire

over which a particular communication takes place. On the server side it depends on the

presence of arequires clause on the remotely provided interface.

The full RT0 mechanism is supported by client and server componentsACRT0Cand

ASRT0Crespectively. In addition a “null” authorization is supported by client and server

componentsACNullC andASNullC respectively. The null authorization components

perform no operation. They are used for dynamic wires that donot require authorization

and remote interfaces provided publicly by servers.

Dynamic Wires

In the following, italics are employed for metavariables that range over arbitrary identi-

fiers. The reader is referred to the rewriting schema defined in Figure 3.10. Configurations

containing dynamic wires are rewritten to configurations that statically wire the using com-

ponentClientC to a stubSpkt n that interacts with the appropriate component man-

agerSelectorC and that handles the communication channel. Every stub generated by

Sprocket is uniquely identified over the scope of the entire program by an arbitrary inte-

gern. TheAuthorizerC component isACNullC in the case where no authorization is

requested.

In contrast, a dynamic wire using either anenable or as clause is rewritten the same

way except that theAuthorizerC component isACRT0C. Furthermore, the list of en-

abled credentials is added to local certificate storage by Sprocket. Certificates in storage are

periodically beaconed at run-time as described above. Finally, the entity on whose behalf

the RPC invocation is performed is specified in the session key negotiation message sent to

70

Dynamic Wire
ClientC. I -> [SelectorC]. I;

Rewritten as. . .
components Spkt_ n;
ClientC. I -> Spkt_ n;
Spkt_ n.ComponentManager -> SelectorC;
Spkt_ n.AuthorizationClient -> AuthorizerC;
Spkt_ n.Packet -> AMSenderC;
Spkt_ n.AMSend -> AMSenderC;

Figure 3.10: Dynamic Wire Rewriting

the server, also as described above.

TheSpkt n stub provides the same interface provided byClientC. Wherever a duty

is posted byClientC in source code, the rewritten call invokes code in the stub that was

specialized to handle that duty. The stub calls into the component manager at run time to

obtain a list of the dynamic wire’s endpoints and then prepares a data packet containing

remote endpoint addresses and marshaled duty arguments. Finally, the stub calls through

theAuthorizationClient interface to perform whatever authorization is needed.

Remote Services

For nodes supporting RPC services, Sprocket generates a skeleton component for each

remote interface provided.Figure 3.11shows the form of a generated skeleton for an

interfaceI providing a single dutyd that takes a single integer parameter. This is for

purposes of illustration; the scheme is generalized in an obvious manner. In general, the

skeleton contains a task corresponding to each duty provided in the interface, and every

generated skeleton is distinguished by a unique integern taken from the same numbering

space as the generated stubs.

When messages are received on a node that provides RPC services, they are exam-

71

Server Component
module ServerC {
provides remote interface I requires "A.g";
other (local) uses/provides

}

Skeleton generated as. . .
module Spkt_ n {
uses interface I;
uses interface Receive;
uses interface AuthorizationServer;

}
implementation {

int value 1;
task void d() {

call I.d(value 1);
}

event message_t * Receive.receive(...) {
...

}
}

Figure 3.11: Server Skeleton Generation

ined to see if they are duty postings and thus to be handled by askeleton. If so, the

AuthorizationServer interface is used to authorize the message. If authorization

succeeds, the task corresponding to the specified duty is posted. That task simply calls into

ServerC through the original interfaceI. Thus the task-like behavior of duties is ulti-

mately implemented using actual nesC tasks inside the server skeletons. Duty parameters

are conveyed via module-level variables accessed by the duty tasks (since nesC tasks do

not take formal arguments).

For each component that provides at least one remote interface, Sprocket creates a

configuration as shown inFigure 3.12that wires the corresponding skeleton(s) to that com-

72

configuration ServerC_SpktC {
other (local) uses/provides

}
implementation {

components ServerC, Spkt_ n;
Spkt_ n. I -> ServerC;
Spkt_ n.Receive -> AMReceiverC;
Spkt_ n.AuthorizationServer -> AuthorizerC;
pass local uses/provides directly to ServerC

}

Figure 3.12: Server Skeleton Wiring

ponent. This new configuration wraps the original componentand replaces uses of the

original component in other configurations in the program.

In this Figure, as is the case for client-side code, theAuthorizerC component is

eitherASRT0Cor ASNullC depending on whether the original remote interface specified

authorization or not.

73

Chapter 4

DScalaness/DnesT

This chapter describes a staged programming system supporting type safe dynamic code

generation for resource constrained embedded devices. This system features programming

abstractions for specializing device code and allowing on-the-fly adaptation to current de-

vice deployment conditions. The system has been implemented as an extension to Scala

(Odersky, Spoon, and Venners 2011), through modification of the Scala compiler.

Specific consideration is given to scenarios where a relatively powerful hub device can

automatically combine dynamically specialized librariesand deploy them to a wireless

sensor network using some over-the-air deployment method such as Deluge (Hui and Culler

2004). To this end a restricted form of staging (Taha and Sheard 1997; Taha 2004; Consel,

Hornof, Marlet, Muller, Thibault, Volanschi, Lawall, and Noyé 1998) is used to achieve

well founded dynamic program generation.First stagecode is written in an extended

version of Scala, called Scalaness which is programmer friendly and suitable for running

on powerful hubs. The execution of a Scalaness program yields a residualsecond stage

node program written in nesT, a type safe variant of the nesC programming language. The

second stage program is constructed from module componentstreated as first class values,

which may be type and value specialized during the course of first stage computation.

74

Figure 4.1: Scalaness/nesT Compilation and Execution Model

Figure 4.1provides an overview of the Scalaness/nesT language architecture. Scalaness

source code is compiled in a modified Scala compiler to Java bytecode, and run in a stan-

dard JVM. At runtime this Scalaness program may generate nesT code, which is subse-

quently rewritten to nesC and compiled using the standard TinyOS compiler. The resulting

image can then be installed on sensor network nodes.

Since the Scalaness program has at its disposal the resources and features of the full

Scala environment, including the JVM and its associated libraries, there are few limitations

imposed on the first stage program. It could, at the programmer’s option, generate separate

images for each node on the sensor network or regenerate the node images at a later time

to account for evolving network behavior.

Another interesting feature of the architecture, capturedin Figure 4.1, is the physical

platform on which different elements of the Scalaness/nesT“workflow” may be executed.

Scalaness source code will typically be compiled in the lab,prior to deployment but execu-

tion of the Scalaness program may be done on a separate devicein the field where the user

will not be in a position to fix type errors in the generated images.

Consequently a central contribution of Scalaness is statictype safety. In particular, the

75

Scalaness type system ensures that typeable Scalaness programs will always generate type

safe residual nesT program. Since type generalization is allowed to be cross-stage, the tech-

nology supports a novel form of cross-stage type specialization. In existing strongly typed

staged sensor programming environments the type correctness of second stage programs

must be verified after execution of first stage code (Mainland, Morrisett, and Welsh 2008),

and could in fact produce an error which would invalidate thedeployment. Such type er-

rors are always caught at first stage compilation time with Scalaness. Previous work on the

staged programming calculus〈ML〉 (Liu, Skalka, and Smith 2012) provides a theoretical

foundation for Scalaness/nesT type safety.

Both Scala and nesC are complex, industrial strength languages. Neither of them are

fully formalized. Thus in order to effectively study the Scalaness/nesT staged programming

system, it is useful to consider simplified or “distilled” versions of those languages. Here,

the names Scalaness and nesT refer to the languages as implemented, whileDScalaness

andDnesT refer to the distilled languages studied theoretically. The implementation is

described in more detail inchapter 5. The distilled languages are described in this chapter.

4.1 Overview of DScalaness/DnesT Design

The goal of DScalaness/DnesT is to describe a practical programming system for writing

arbitrary embedded applications. In that respect it is moregeneral than SpartanRPC, which

focuses on the specific problems of providing a convenient RPC discpline together with

language level features for controlling resource access. In contrast, authorization is only

one application of many to which Scalaness/nesT could be applied.

Scala is an appropriate choice as a basis for the first stage language because its compiler

is open source and easy to modify and maintain. Also Scala offers a rich, flexible, and

user friendly set of features familiar to application programmers working in traditional

76

(desktop, server) environments. Finally, Scala has an active user community with a growing

collection of tools and other supporting resources.

However, Scala is not appropriate in the extremely resourceconstrained environment of

a sensor network node or other small embedded system. In contrast nesT is implemented

by translation into nesC, which can in turn be compiled for TinyOS platforms. The nesT

language is roughly (although not exactly) a subset of nesC and shares with nesC many

features appropriate for embedded systems programming.

DScalaness and DnesT will be demonstrated via an example that illustrates both type

and value specialization of DnesT modules. Although the example is small it nevertheless

demonstrates the essential features of the system in a suggestive manner.

It is well known that minimizing the number of bits used to represent a sensor node

address can produce significant energy savings. Each bit of transmission consumes energy

similar to 800 instructions (Madden, Franklin, Hellerstein, and Hong 2002) so the fewer

bits transmitted the better. However, sensor networks are “ad hoc” in the sense that the dis-

tribution of the nodes is often unpredictable until deployment, so the optimal data type used

to represent node addresses is an environmental property that may need to be determined

in situ.

The example also value specializes DnesT modules with specific session keys for use

during secure communication. In particular, as with SpartanRPC, communication between

security domains in a sensor network can be mediated by credentials implemented as keys,

with nodes lying at domain frontiers using different keys tosend (to the other domain)

and receive (from the other domain) over secured links. Since it is unpredictable where

nodes will be physically distributed in space, appropriatekeys for each node need to be

establishedin situ. Defining node functionality using generic code that must beinstantiated

with specific keys allows adaptation to a deployment environment, and allows expensive

computations for establishing session keys to be offloaded from the network nodes to a

77

higher powered device.

Figure 4.2shows the complete example. The definition begins with a parameterized

typemesgT(t) using the DScalanessabbrvt binder, where an instancemesgT(τ) denotes

the ground type obtained by substitutingτ for t in the definition ofmesgT.

Next, on line3 defines a typeradioT, which is the type of DnesT modules that provide

an API to the radio. The DnesT module language is a simplified version of the nesC com-

ponent language. In this example, any module of typeradioT exports aradio x function

for sending messages, and imports ahandle radio r function that allows received mes-

sages to be handled in a user-defined manner. Both functions take message references as

arguments. Furthermore, the module is parameterized by thetype of node addressesat,

upper-bounded by 32-bit unsigned integer. Thus, any moduleof typeradioT can be dy-

namically specialized to an 8, 16, or 32 bit address space. Module type parameters are

always defined with brackets< ... >.

Now on line7 another typecommT is defined which is the type of modules providing a

QOS layer over a specialized radio. Although this type is also parameterized by a bounded

address typeat, as isradioT, the parameterization is subtly different syntactically and

semantically, sincecommT expects a program context where the radio has been specialized.

Thus, incommT, at is understood as being “some” type with an upper bound ofuint

which occurs in the module signature, whereas the module itself has no parameters to be

instantiated. This sort of type is needed in the presence ofdynamic type construction.

Next on lines12 and17 modules are defined for sending and receiving messages that

provide a layer of authentication security over the radio. Observe that in the implementa-

tion of send in moduleauthSend, messages are signed with a keysendk, whereas when

messages are received they must be signed with a possibly different keyrecvk before being

passed on to the user’s receive handler, as specified in module authRecv. These modules

are parameterized by an address typeat, and also thesendk andrecvk key values.

78

1 abbrvt mesgT(t) =
2 { src : t; dest : t; data : uint8[] };
3 abbrvt radioT =
4 < at 4 uint >
5 { export error _t radio _x(mesgT(at) *);
6 import error _t handle _radio _r(mesgT(at) *); };
7 abbrvt commT =
8 (at 4 uint) ◦ < >
9 { export error _t send(mesgT(at) *);

10 import error _t handle _receive(mesgT(at) *); };
11

12 val authSend =
13 < at 4 uint; sendk : uint8[] >
14 { import error _t radio _x(mesgT(at) *);
15 export error _t send(m : mesgT(at) *)
16 { radio _x(AES_sign(m, sendk)); } };
17 val authRecv =
18 < at 4 uint; recvk : uint8[] >
19 { import error _t handle _recv(mesgT(at) *);
20 export error _t handle _radio _r(m : mesgT(at) *)
21 { if (AES_signed(m, recvk))
22 handle _recv(m); } };
23

24 def authSpecialize
25 (nmax : uint16,
26 radioM : radioT,
27 keys : Array[Array[uint8]]) : commT
28 typedef adt 4 uint =
29 if (nmax < = 256) uint8 else uint16;
30 val sendM = authSend〈mesgT(adt); keys(0)〉;
31 val recvM = authRecv〈mesgT(adt); keys(1)〉;
32 sendM ⋉ radioM〈mesgT(adt)〉 ⋉ recvM;
33 }
34

35 val appMR =
36 < >{ export handle _recv(m : mesgT(uint8) *) {...} };
37 val appM =
38 < >{ import send(mesgT(uint8) *); export main() {...} };
39 image(appM ⋉

40 authSpecialize(nmax, radioM, keys) ⋉ appMR); }

Figure 4.2: DScalaness/DnesT Example

79

To generalize a technique for composing these modules with aradio to yield a module

of typecommT, that is abstract with respect to neighborhood sizes, radioimplementations,

and session key material, the DScalanessauthSpecialize function is defined on line24.

The first-class status of DnesT modules in DScalaness is apparent here. Starting at line25

the method is specified to take a module parameterradioM of type radioT among its

arguments, and to return a module of typecommT as a result. It also takes an array of keys

as an argument, and on lines30 and31 it instantiatessendMesg andrecvMesg with the

keys in the array. Finally it uses the typeadt in the instantiations, which in line28 is

dynamically constructed on the basis of the input variablenmax.

This illustrates a key novelty of the system, the ability todynamicallyset a type to use

on a node based on a decision made during the execution of the DScalaness program. Since

the value ofnmax cannot be statically determined, the type analysis only knows thatadt is

some subtype ofuint. Finally, on line32 the instantiated radio module is composed with

the instantiated send and receive modules via the DScalaness⋉ operator. The semantics of

module composition here is standard (Cardelli 1997); in a composition aka wiringµ1⋉µ2,

the exports ofµ2 are connected to imports ofµ1. The function result is a module of type

commT.

To obtain a module defining a node image in a program context where neighborhood

size is known, a radio implementation has been provided, andsession keys have been com-

puted. The results can then be composed of anauthSpecialize function with modules

specifying top-level message send and receive behaviors, and a main application entry

point (here knowledge that address sizes can be limited to 8 bits is assumed, sonmax <

256). At line40 a closed module is defined and a binary mote image can be produced by a

call toimage.

In DScalaness,image is an assertion that its argument is arunnablemodule, with

no unresolved parameters or imports. In the Scalaness implementation, this is the point

80

where nesT source code is actually generated. Successful DScalaness/DnesT type check-

ing (which occurs during stage 1 compilation as perFigure 4.1) statically guarantees that

specialized code generated at the point ofimage will run in a type-safe manner when it is

eventually loaded and run on a node.

4.1.1 Modules as Staging Elements

In DScalaness, DnesT modules can be treated as data to be composed, following tradi-

tional staged programming languages (Taha and Sheard 1997). The so-called “runnable”

modules—ones without imports or generic parameters—definean initial machine config-

uration. This supports a TinyOS node reprogramming model where the entire OS is re-

compiled and target nodes are reimaged and rebooted. Theimage operation (invoked in

line 40of the example) asserts its argument to be runnable and dumpsthe module code for

subsequent deployment.

DnesT modules specify a list of imported function signatures, and a list of exported

functions implemented by the module. Module genericity is obtained via a sequence of

type and value parameter definitions. For example, as specified inFigure 4.2, any module

radioC satisfyingradioT has an address type parameteradt which specializes the

message type declared in the exportedradio function.

All generic type parameters are assigned an uppertype boundvia the subtyping symbol

4. ThenodeC module additionally has value parametersself andneighbor , which

are type cast during the call to the importedsend function. The concrete syntax used in

Figure 4.2precedes each import/export definition with keywordimport /export for a

more readable presentation; this is not part of the formal DnesT syntax.

The other DScalaness operations on DnesT modules are instantiation and composi-

tion. In lines30 and31, the modulesauthSend andauthRecv are instantiated with

81

arguments specifying the type of message to be used, parameterized by a dynamically con-

structed type, and by the value of the desired key. In lines32and40, modules are composed

using the⋉ operator. The semantics of module compositionµ1 ⋉ µ2 is standard (Cardelli

1997); imports of one module are connected to exports of the other. DnesT module com-

position is analogous to nesCconfiguration wiring.

4.1.2 Typing

The most novel feature of the DScalaness type system is dynamic type construction. Dy-

namic construction of DnesT types is allowed at the DScalaness level for module instan-

tiation and specialization. On line28 in Figure 4.2, the address typeadt is dynamically

constructed via a conditional expression.

Scala type checking has been formally studied and shown to bedecidable (Cremet, Gar-

illot, Lenglet, and Odersky 2006). DScalaness type checking is an extension of Scala type

checking; a new module type form is introduced to the Scala type language, type check-

ing cases have been added for the three module operations: instantiation, composition, and

imaging. No other part of Scala type checking needs to be modified. DnesT type checking

is defined as a standalone type system, and yields first stage module types.

4.1.3 Cross-Stage Migration of Types and Values.

A crucial feature of the DScalaness/DnesT programming model is process separationbe-

tween stages (Liu, Skalka, and Smith 2012). Since first and second stage code are to be run

on separate devices, state is not shared between these stages. Thus, serialization may be

required when modules are instantiated. Furthermore, types and base values may be rep-

resented differently on the first and second stages, requiring some sort of transformation

during module instantiation. An example transformation isdiscussed insubsection 4.3.3.

82

4.2 The DnesT language

The DnesT design aims to distill a production language, nesC, into its fundamental ele-

ments, yielding a language that is amenable to formal analysis but also practical. However,

since the focus here is on type safety, DnesT enhances, and insome instances restricts,

those fundamental elements to obtain a type safe language, as discussed below.

Notation

Sequencesare notatedx1, . . . , xn, and are abbreviatedx; x(i) is thei-th element,∅ denotes

the empty sequence, and|x| is the size. The notationx ∈ x denotes membership in se-

quences, andxx denotes a sequence with headx and tailx. Append is denoted asx@y. For

relational symbolsR ∈ {4,=, :}, the abbreviation:xRy = x1Ry1, . . . , xnRyn is used.

So for example,x : τ = x1 : τ1, . . . , xn : τn.

The following naming conventions are also used for various language constructs. Meta-

variablef (of setF) is used for function names,l (of setL) for field names,x (of setV)

for term variables,t (of setT) for type variables,m (of setM) for memory locations,n8

(of setZ28) for 8-bit unsigned integers, andn16 (of setZ216) for 16-bit unsigned integers.

Finally, use ofn to range over both types of integers when their type is irrelevant.

4.2.1 Syntax and Features of DnesT

The syntax of DnesT is presented inFigure 4.3. It comprises a core language of expressions

for defining computations, a language of declarations for defining variables and functions,

and a language for defining modules.

83

ς, τ ::= t | ⊤ | uint8 | uint16 | uint | uninit | types

{l : τ} | τ [] | τ*

e ::= v | ℓe | e ope | (τ) e | f() | ℓe = e || &ℓe | e⊲ e | expressions

if (e) e else e | while (e) e | e; e | post f()

ℓe ::= x | e[e] | e.l | * e l-values

v ::= n8 | n16 | uninit base values

op ::= + | * | && | == | . . . operations

id ::= f | x identifiers

c ::= f(V) : τ = {e} command definition

s ::= f(V) : τ command signature

d ::= τ x = e | τ x = [e] | τ x = {l = e} | c declarations

T ::= t 4 τ type parameters

V ::= x : τ value parameters

ι ::= s imports

ξ ::= c exports

ε ::= s export signatures

µ ::= <T;V>{ι; d; ξ} module definitions

µτ ::= <T;V>{ι; ε} module signatures

Figure 4.3: Program Syntax of nesT

84

Expressions

The DnesT language includes standard C-like constructs, such as conditional branching,

looping, sequencing of expressions, and function calls, arrays, structs, numeric base data-

types (and operations on them). Familiar syntaxe[e] ande.l is used for array indexing and

structure field selection, respectively.

A “null” value uninit is also provided. Function definitions and calls allow multiple

parameters as is usual in C-like languages. Memory locationsm are program values (á la

pointers). As in all C dialects, assignment can only be performed on so-calledl-valuesℓe,

a restricted subset of expression syntax.

As in nesC, no dynamic memory allocation is possible; all memory layout is estab-

lished by static variable declarations. However, unlike nesC full pointer arithmetic is not

supported for the sake of type safety. Instead an array increment operator⊲ allows the suf-

fix of an array to be computed based on an integral shift distance. Type casting and array

operations have run time checks imposed, as explained insubsection 4.2.2.

Also as in nesC, apost operation is provided for posting tasks. The semantics of tasks

follow the “run-to-completion” model of TinyOS. Interrupts are omitted from the language

to avoid concurrency issues in the semantics. Typical sensor network applications do not

use interrupts directly; they are needed instead in low level libraries.

Declarations

Programs in DnesT may refer to declarations of values and functions which are scoped at

the module level and establish statically the memory layoutof a DnesT module. A con-

venient form for explicit initialization of array and struct values is provided, though there

are no base values for either arrays or structures. Besides convenience, declarations are

useful to support serialization of program objects passed in from DScalaness, as discussed

85

in subsection 4.3.3.

In the formal syntax and semantics of DnesT presented here, functions are nullary (i.e.,

parameterless) as a simplification. This does not limit expressivity since DnesT does not

permit recursion. Thus function parameters can be simulated in principle by way of module

level declarations. The actual implementation of nesT allows functions to be parameterized

as in nesC. Accordingly, syntactic liberties are taken in the examples in this chapter and

make use of non-nullary functions.

Modules

DnesT Modules are written<T;V>{ι; d; ξ} with T and V being generic type and term

parameters,d being module scope identifier declarations, including function definitions,

andι andξ being imports and exports. Exports are explicitly defined inthe module.

A “runnable” module—one without imports or parameters—is the DnesT model of a

device image. The declarations in the module defines an initial machine configuration, and

the application entry point is defined in a required commandmain.

Definition 4.2.1 A module of the form<∅;∅>{; d; ξ}, wheremain() : uninit ∈ ξ, is

called runnable.

4.2.2 Semantics of DnesT

The operational semantics for DnesT is defined as a small steprelation on dynamic con-

figurations inFigure 4.4. The semantics are decomposed into several distinct relations;

each computation “sub-relation” can be distinguished by the arity of the relevant config-

urations. The semantics for the non-module portions follows standard C-like language

formalizations (Leroy 2006; Grossman 2003).

86

π ::= m | ◦ l/r tags

κ ::= ⌊π, ν⌋ dynamic objects

ℓe ::= · · · | ⌊m, ν⌋

e ::= · · · | κ

ν ::= v | m | [κ] | {l = κ} dynamic values

F ::= f : τ = (e) codebase

M ::= m : τ = ν memory

E ::= {} | E; e | κ[E] | E[e] | E.l | κ = E | E = e | a(τ)E | evaluation contexts

* E | &E | E ope | κ opE | if (E) e else e | while (E) e

ℓ ::= boot(d) | run(e) run levels

Figure 4.4: Syntactic Definitions for Dynamic Configurations

Semantics of Expressions

At the heart of DnesT is a C-like language of expressions built from l- and r-values. An l-

value is an object in memory that can be the target of an assignment, in particular a variable,

a structure field, an array member, or a dereferenced pointer. An r-value is a value resulting

from expression computation and may be a value that is not necessarily in memory.

The DnesT syntax for necessary dynamic entities is given inFigure 4.4. In DnesT, com-

puted values are represented as pairs⌊π, ν⌋, whereν is a base, pointer, array, or structure

value, andπ is a tag indicating whether or not the value is in memory. Computed r-values

not in memory are denoted⌊◦, ν⌋, e.g.,⌊◦, 2⌋ is the result of computing 1 + 1. The l-value

object⌊m, ν⌋ indicates that the valueν is in memory at locationm.

Memories are modeled as sequences of definitionsm : τ = ν; observe that each mem-

ory locationm is typed atτ and assigned a valueν. Memories are interpreted as mappings,

writing M(m) = ν when there exists someτ such thatm : τ = ν is the leftmost definition

87

ArrIdx

M, ⌊m, [κ]⌋[⌊π, n⌋] M,κn

Star

M, * ⌊π,m⌋ M, ⌊m,M(m)⌋

AddrOf

M,&⌊m, ν⌋ M, ⌊◦,m⌋

Cast

M, (τ)κ docast (τ, κ,M)

Assign

M, ⌊m, ν1⌋ = ⌊π, ν2⌋ M [m 7→ ν2], ⌊π, ν2⌋

Call

F (f) = (e)

M, f() M,e

Int

M,n M, ⌊◦, n⌋

While

M,while (e1) e2 M,if(e1) e2;while (e1) e2 else uninit

Context

M,e M,e′

M,E{e} M,E{e′}

Figure 4.5: Dynamic Semantics of Selected Expressions

of m in M , and writingM [m 7→ ν] to denote(m : τ = ν) wherem : τ = ν ′ is the leftmost

definition ofm in M .

Evaluation rules for selected expressions are given inFigure 4.5. Here, computation

is on pairs of memories and expressions. The existence of a functiondocast is assumed,

which performs a casting conversion. This function is allowed to be defined by users, and in

certain cases may be a no-op (e.g., casting pointers to arrays when the latter are contiguous

in memory). In any case, ifdocast(τ, ν,M) is defined, the cast conversion is required to be

type safe, in that the result must be of typeτ . This is discussed more insubsection 4.2.3.

Note that a pointer is modeled by an object of the form⌊π,m⌋. The operation* ⌊π,m⌋

looks up the value at addressm in memory. The operation&⌊m, ν⌋ returns the addressm

of the object in memory as an r-value. Functions are defined inan assumed-given codebase

F with a lookup semantics defined similarly to that for memoriesM .

88

RunTime

F ⊢ P,M, e P ′,M ′, e′

F, P,M, run(e) F, P ′,M ′, run(e′)

BootTime

F, P,M, d F ′, P ′,M ′, d
′

F, P,M,boot(d) F ′, P ′,M ′,boot(d
′
)

RunStart

F, P,M,boot(∅) F, P,M, run(main())

Figure 4.6: Boot and Runtime Semantics

Semantics of Tasks

NesC uses a simple scheduling model of serial, run-to-completion execution of queued

taskswhere each task is defined by a parameterless function. The base semantics of DnesT

are thus supplemented with a correspondingtask collectionP of the tasks yet to run, and

defined with a single step transition relation on configurations extended with task collec-

tions. The definition of task collections is left undetermined, and also how tasks are added

and retrieved—this because it is unspecified how tasks are treated by the scheduler. The

notationadd(P, f()) denotesP ′ which isP plus the task consisting of the function callf(),

andnext(P) denotes a pairP ′, f() which comprises the “next” taskf() in P , andP ′ which is

P with f() removed. The task semantics, integrated with the expression semantics defined

previously, are defined inFigure 4.7. As for expressions, the existence of a given codebase

F is assumed. When it is necessary to be explicit about which codebase is given for a

computation,F ⊢ P,M, e P ′,M ′, e′ will be written.

Semantics of Declarations

The operational behavior of declarations is fairly straightforward and is shown inFigure 4.8.

Functions and first class mutable variables may be declared and initialized. At run time

mutable variables are bound (via substitution) to an l-value⌊m, ν⌋, wherem is the address

89

CoreStep

M,e M ′, e′

P,M, e P,M ′, e′

Post

P,M,E{post f()} add(P, f()),M,E{uninit}

TaskStart

next(P) = P ′, f()

P,M,m P ′,M, f()

Figure 4.7: Semantics of Tasks and Configurations

of the variable. Thus, for base and function type declarations the following rules apply,

respectively:
FDecl

F,P,M, (f : τ = (e))d (f : τ = (e))F,P,M, d

BaseInit

κ = ⌊m, ν⌋ m 6∈ Dom(M)

F,P,M, (τ x = ⌊π, ν⌋)d F,P, (m : τ = ν)M,d[κ/x]

A contextual evaluation rule for declarations allows variables to be initialized with arbitrary

expressions. This is omitted for brevity but is similar to the expression Context rule, using

a notion of declaration evaluation contexts denotedD.

Semantics of Boot and Run Time

In the DnesT machine model, a top level program execution is obtained by loading and

running a fully instantiated module. The codebase, memory layout, and initial machine

configuration is generated at load time by evaluating the declarations in the module. The

top level program is then started at themain entry point.

To differentiate load/boot and run segments of a computation,boot() andrun() con-

structors are defined to inject declarations and expressions into a uniform datatype. Top

90

DeclContext

F ⊢ P,M, e P ′,M ′, e′

F, P,M,D[e]d F, P ′,M ′, D[e′]d

BaseInit

κ = ⌊m, ν⌋ m 6∈ Dom(M)

F, P,M, (τ x = ⌊π, ν⌋)d F, P, (m : τ = ν)M, d[κ/x]

StructInit

κ = ⌊m, ν⌋ m 6∈ Dom(M)

F, P,M, (τ x = ν)d F, P, (m : τ = ν)M, d[κ/x]

FDecl

F, P,M, (f : τ = (e))d (f : τ = (e))F, P,M, d

Figure 4.8: Semantics of Declarations

level computation is then defined as a single step reduction relation on configurations

F, P,M,X, whereX is of the formboot(d) or run(e) depending on whether the machine

is booting or running.

Definition 4.2.2 For a runnable module of the form<∅;∅>{; d; ξ} the following is de-

fined:

bootload(<∅;∅>{; d; ξ}) = ξ,∅,∅,boot(d)

Now, for all computation relations ∗ is defined to be the reflexive, transitive closure

of . The concern for type analysis is to rule out modules which, when bootloaded, will

evaluate to semantically ill-formed configurations. In thecontext of DnesT this is defined

as follows. Notice that failing casts and out-of-bound array access are not stuck cases, since

run time checks enable graceful failure behavior.

91

Definition 4.2.3 A configurationM, e fails a run time checkif and only ife is of the form

(τ) κ anddocast(τ, κ,M) is undefined, ore is of the form⌊m, ν⌋[⌊π, n⌋] andn ≥ |ν|.

Definition 4.2.4 A configurationF, P,M, ℓ is stuck if and only if it is irreducible andℓ

is neither of the formrun(E{e}) nor boot(D{e}) whereM, e fails a run time check. A

runnable moduleµ goes wrongiff bootload(µ) ⋆ F, P,M, ℓ whereF, P,M, ℓ is stuck.

4.2.3 DnesT Type Checking

The typing rules for DnesT combine a standard procedural language typing approach with

subtyping techniques adapted from previous foundational work (Liu, Skalka, and Smith

2012; Ghelli and Pierce 1998). The goal here is to specify the typing algorithm used in the

DScalaness implementation.

Subtyping

At the heart of the system is a decidable subtyping judgementT ⊢ τ1 4 τ2, whereT in

the context of typing is called acoercionand defines a system of upper bounds for type

variables. Recursive type bounds definitions are not allowed.

The implementation of the subtyping algorithm is based on a classic technique (Ghelli

and Pierce 1998), with straightforward extensions to accommodate structures and arrays as

defined inFigure 4.9.

A subtyping relation typically calledpromotionis also central to the approach; given

a set of subtyping coercionsT and a type variablet, promotion will return the least upper

bound oft which is also a structured type, i.e., not a type variable.

Definition 4.2.5 The relation≪ promotesa type variable:

T ⊢ T(t)≪ τ

T ⊢ t≪ τ

¬∃t.τ = t

T ⊢ τ ≪ τ

92

ReflS

T ⊢ τ 4 τ

TopS

T ⊢ τ 4 ⊤

TransS

T ⊢ T(t) 4 τ

T ⊢ t 4 τ

UintS

T ⊢ uint8 4 uint16 4 uint

FnBodyS

T ⊢ τ1 4 τ2

T ⊢ (τ1) 4 (τ2)

StructS

T ⊢ τ1 4 τ3

T ⊢ {l1 : τ1 ⊎ l2 : τ2} 4 {l1 : τ3}

Figure 4.9: Subtyping Rules

It is important to observe how promotion and subtyping are used differently. Since any sort

of l-value can be written to via assignment, subtyping invariancemustbe imposed on l-

values occuring in write positions to maintain type soundness. Therefore type subsumption

is allowed only at program points where read-only control flow occurs—for example when

an r-value is directly assigned to an l-value.

Type Environments and Checking

The typing algorithm for source code expressions is based onjudgementsG,T ⊢ e : τ ,

whereG is an environment of free term variable typings, syntactically defined equivalent

to value parametersV and importsι. Type environments are also endowed with the same

lookup semantics as memories and codebases. Representative typing rules for selected

expressions are given inFigure 4.10. The derivation of any judgementG,T ⊢ e : τ can be

interpreted as an algorithm where bothG andT are given as arguments andτ is returned as

a result.

Note that type casting is only statically allowed if the types involved arecompatibleas

specified in rule CastT. This relation, formalized asT ⊢ compatible(τ1, τ2), is left abstract

and user defined. Recall that the semantics of DnesT relies ona docast function that im-

93

CastT

G,T ⊢ e : τ T ⊢ compatible(τ, ς)

G,T ⊢ (ς)e : ς

CallT

G,T ⊢ f : ς T ⊢ ς ≪ (τ)

G,T ⊢ f() : τ

AssignT

G,T ⊢ e1 : ς1 G,T ⊢ e2 : ς2 T ⊢ ς2 4 ς1

G,T ⊢ e1 = e2 : ς1

StarT

G,T ⊢ e : ς T ⊢ ς ≪ τ*

G,T ⊢ * e : τ

NameT

G(id) = τ

G,T ⊢ id : τ

IndexT

G,T ⊢ e1 : ς1 G,T ⊢ e2 : ς2 T ⊢ ς1 ≪ τ [] T ⊢ ς2 4 uint

G,T ⊢ e1[e2] : τ

Figure 4.10: Typing Rules for Selected DnesT Expressions

plements cast conversions. Any implementation ofdocast must be type safe, which allows

the ruling out of run time cast failures in well typed programs. Informally,docast is type

safe if and only if the resulting expression has the type of the cast. Refer to (Liu, Skalka,

and Smith 2012) for a thorough formal discussion of type safety for this style of casting.

Declaration and Module Typings

At the module level, it is necessary to first type check and generate typing environments

from declarations, as specified inFigure 4.11(rules for array and struct declarations omit-

ted for brevity). Given this, a module typing is obtained by type checking module exports,

using a coercion obtained from the module type parameters and a typing environment ob-

tained from a combination of module value parameters, imports, and variable type declara-

tions. Module type checking is also specified inFigure 4.11. A type safety conjecture for

DnesT can then be stated as follows.

Conjecture 4.2.1 (DnesT Type Safety)If µ : µτ is valid andµ is runnable, thenµ does

94

DeclsNoneT

G,T ⊢ ∅ : ∅

DeclsSomeT

G,T ⊢ d⇒ (x : τ) (x : τ)G,T ⊢ d : G′

G,T ⊢ dd : (x : τ)G′

DeclBaseT

G,T ⊢ e : τ

G,T ⊢ τ x = e⇒ x : τ

DeclFunT

G,T ⊢ e : τ

G,T ⊢ f : (τ) = (e)⇒ f : (τ)

ModuleT

ι@V,T ⊢ d : G G@ι@V,T ⊢ ξ : ε

<T,V>{ι; d; ξ} : <T,V>{ι; ε}

Figure 4.11: Selected Declaration and Module Typing Rules

not go wrong.

4.3 The DScalaness Language

DScalaness serves as the language for DnesT module composition in the same manner

as nesC configurations serve to compose nesC modules, but DScalaness is a more pow-

erful metalanguage since modules are treated as a new category of first class values in

DScalaness. Instantiation, composition (“wiring”), and imaging of modules are defined as

operations on module values. Because instantiation of modules with both types and values

is allowed, values and types may migrate from the DScalanesslevel to the DnesT level,

realizing a disciplined form of code specialization.

The goal of this section is to describe the DScalaness syntaxand semantics realized

in the implementation, and justify the prior claims of type safety. Since Scala as imple-

mented is too large to easily formalize, the formalization here is of distilled subset of Scala,

95

L ::= class C〈X̄ <: N̄〉 extends N {T̄ f̄; K M̄} class definitions

K ::= C(T̄ f̄){super(f̄); this.f̄ = f̄; } constructors

M ::= T m(T̄ x̄){return e; } methods

e ::= x | e.f | e.m(ē) | new C〈T̄〉(ē) | (N)e | e.f = e | l | expressions

def x : T = e in e | µ | e⋉ e | e〈ē; ē〉 | image e |

abbrvt X(X̄) = T in e

T ::= X | N | T ◦ µτ scala level types

N ::= C〈T̄〉 class types

l ::= (p, N) references

Figure 4.12: The Syntax of DScalaness

DScalaness, that has also been extended to include syntax and semanticsfor definining and

composing DnesT modules. A formalized core calculus and type analysis for Scala exists

(Cremet, Garillot, Lenglet, and Odersky 2006), but the formalization presented here is ad-

equate and simpler. Many features of Scala have been elided in DScalaness, but all Scala

features are adopted unchanged in the Scalaness implementation. Here the focus is primar-

ily on the module metaprogramming operations that have beenadded. This presentation

“cleans up” some implementation details, but is otherwise an accurate description of the

module operation semantics and especially the module operation typing rules.

4.3.1 Syntax of DScalaness

The DScalaness language syntax is presented inFigure 4.12. To represent an adequate core

calculus of Scala, it subsumes two Featherweight Java variants: Featherweight Generic

96

Java (FGJ) (Igarashi, Pierce, and Wadler 2001) and Assignment Featherweight Java (AFJ)

(Molhave and Petersen 2005). The generic class types of FGJ are needed to model type con-

struction, and the mutation in AFJ is essential to consider since one main concern is DnesT

code specialization; DnesT programs are run in a separate process space, so specialization

with stateful values, a likely common idiom in a Scala setting, presents a challenge.

Refer to (Igarashi, Pierce, and Wadler 2001; Molhave and Petersen 2005) for details

on the FGJ and AFJ object oriented calculi, which are represented in the languages of

class definitions, constructors, methods, and the first lineof expression forms defined in

Figure 4.12. DScalaness extends these features with a typed variable declaration form

def x : T = e1 in e2 where the scope ofx is e2, and a dynamic type construction form

typedef x <: T = e1 in e2 (defined as syntactic sugar in Definition4.3.1) with similar

scoping rules. For programming convenience a simple parameterized type abbreviation

binderabbrvt is also provided.

DnesT modulesµ are included in the DScalaness expression and value spaces:instan-

tiation is obtained via the forme1〈ē1; ē2〉, whereē1 are type parameters andē2 are value

parameters. Wiring of modules is denotede1 ⋉ e2. Imaging of modules, denotedimage e,

ensures thate computes to a runnable module, in the sense of4.2.1.

4.3.2 Semantics of DScalaness

The semantics of DScalaness is an extension of the semanticsof AFJ and FGJ to incorpo-

rate DnesT modules and operations. Computations assume a fixed class tableCT allowing

access to class definitions via class names, which always decorate an object’s type. Astore

ST is a function from memory locationsp to object representations. Objects are repre-

sented in memory by lists of object referencesl̄, which refer to the locations of the objects

stored in mutable field values. A referencel is a pair(p, N) wherep is the memory location

97

of an object representation andN is the nominal type of the object, including its class name.

Hence, given an object reference(p, C〈T̄〉), one can access and mutate its fieldsl̄ = ST (p),

and access and use its methods via the definitionCT (C).

Following AFJ, the semantics of DScalaness is defined as alabeled transition system,

where transitions are of the forme − {s = ST, s′ = ST ′} → e′. Intuitively, this denotes

that given an initial storeST and expressione, one step of evaluation results in a modified

storeST ′ and contractume′. As an abbreviation,e → e′ is written when the store is not

altered.

The primary novelty of DScalaness over FGJ/AFJ is the formalsemantics of type and

module construction. Type construction is provided to allow programmers to dynamically

construct module type instances. The appropriate behavioris obtained by treating dynami-

cally constructed types as extensions of a basic class of objects, and declarations of DnesT

level types via atypedef construct as syntactic sugar for ordinary object construction.

A LiftableType class is defined as the supertype of all types of objects whichcan be

used to instantiate a module, and dynamically constructed types are defined as instances of

a genericMetaType class.

Definition 4.3.1 Any DScalaness class tableCT comprises the following definitions:

CT (LiftableType) = class LiftableType〈〉 extends Object {. . .}

CT (MetaType) = class MetaType〈X <: LiftableType〉 extends Object {. . .}

Then assumed as given the following syntactic sugar:

typedef x <: T = e1 in e2 , def x : MetaType〈T〉 = e1 in e2

Class typeMetaType is generalized on a single type variable. For brevity of notation,

define:

MetaType〈T̄〉 , MetaType〈T〉

98

A crucial fact of DScalaness type construction is that any dynamically constructed type

cannot be treated as a type at the DScalaness level. This is a more restrictive mechanism

than envisioned in the foundational model (Liu, Skalka, and Smith 2012; Liu, Skalka, and

Smith 2009), however it allows DScalaness to be defined as a straightforward extension to

Scala, especially in terms of type checking.

Module instantiation, shown inFigure 4.13, is the only point where specialization of

DnesT modules is allowed. Since DScalaness and DnesT are twodifferent language spaces,

some sort of transformation must occur when values migrate from DScalaness to DnesT

via module instantiation. Thislifting transformation involves both data mapping and seri-

alization since the process spaces also differ. The aim is tobe flexible and allow the user

to specify how values are lifted and how types are transformed. The only requirement is

that lifting and type transformation are coherent, in the sense that the lifting of an object

should be typeable at the object’s type transformation. This is formalized in the following

definition.

Definition 4.3.2 Assume a relation
lift
→֒ which transforms a DScalaness referencel into

DnesT declarationsd and expressione is provided. Also assume a DScalaness-to-DnesT

transformation of typesJ·K is provided. To preserve type safety, it is required that in all

cases(p, N)
lift
→֒ d, e implies both of the following for some type environmentG:

∅,∅ ⊢ d : G and G,∅ ⊢ e : JNK

The full definition of serialization, along with an example,are given and discussed below in

subsection 4.3.3. In brief, when a moduleµ is instantiated, serialization will bind the value

parameters ofµ to the lifted values of their instances in a series of declarations that are

added to its own. This is specified in the ModInst rule inFigure 4.13. Another important

detail of the ModInst rule is that only type information in type parameters is used, and

migrates into the module via type transformation and ordinary substititution.

99

ModInst

µ = <t 4 τ ; x : ς>{ι; d; ξ} serialize(x, ς, l̄) = d′

µ〈(p, MetaType〈T̄〉); l̄〉 → <>{ι; d′@d; ξ}[JT̄K/t]

ModWire

ι = (ι1/Dom(ξ2))@ι2 d = d2@ξ2 |Dom(ι1)

<T1,V1>{ι1; d1; ξ1}⋉<T2,V2>{ι2; d2; ξ2}

→

<T1 . T2,V1 . V2>{ι; d . d1; ξ1}

ModImage

image (<>{; d; ξ})→ <>{; d; ξ}

Figure 4.13: DScalaness Module Semantics

Module wiring is given a standard component composition semantics. Only the wiring

of instantiated modules is allowed, which is consistent with nesC and simpler to implement.

In a wiring e1 ⋉ e2, the imports ofe1 are wired to the exports ofe2. This is specified in

the ModWire rule inFigure 4.13, which relies on the following auxiliary definition of

operations for combining mappings.

Definition 4.3.3 (Special Mapping Operations)Letm range over vectors with mapping

interpretations, in particular T, V,ι, andξ. Binary operatorm1 . m2 represents (non-

exclusive) map merge, i.e.,m1 . m2 = m1@m2 with the requirement thatid ∈ Dom(m1)∩

Dom(m2) impliesm1(id) = m2(id). The mappingm/S is the same asm except undefined

on domain elements in setS, and the mappingm | S is the same asm except undefined on

elements not inS.

Finally, the ModImage rule inFigure 4.13shows that imaging it is an assertion requiring

its arguments to be a runnable module.

100

4.3.3 Serialization and Lifting

Serialization generates a flattened DnesT source code version of a DScalaness object in

memory. At the top level, serialization binds the value parameters of a module to the results

of flattening, aka lifting, via a sequence of declarations. Here is the precise definition.

Definition 4.3.4 (Serialization) Assume given a storeST which is implicit in the following

definitions. The serialization of DScalaness references isdefined as follows, along with an

extension of the user defined lifting relation to sequences of references:

l
lift
→֒ d, e

serialize(x, τ ,l) = d@ τ x = e
∅

lift
→֒ ∅,∅

l
lift
→֒ d, e l̄

lift
→֒ d′, e

ll
lift
→֒ d@d′, ee

Although lifting is user defined, a standard strategy is to introduce a new declared variable

for each memory reference in the lifted object, and bind the variable to the lifted referent.

Hence, lifting will typically be defined recursively. In this implementation, a “default”

lifting has been adapted which follows this strategy, and also transforms objects by just

transforming the fields into a representative structure, and ignoring methods. This is illus-

trated with an example insection 3.6.

The essence of this transformation can be formally capturedwith the following defini-

tions. It is easy to see that these definitions will satisfy the requirements of Definition4.3.2.

Example 4.3.1 In this example lifting of any object references is allowed,and transform

the objecto into a structure containing the transformed fields ofo. Methods are disregarded

by the transformation. Here is the specification of the type transformation:

ChapinT

CT (C) = class C〈X̄ <: S̄〉 extends N {R̄ f̄; K M̄}

JC〈T̄〉K = {f : JR̄[T̄/X̄]K}

101

ModT

µ : µτ in nesT type checking

Γ ⊢ µ : ∅ ◦ µτ

ModInstT

Γ ⊢ e : ∅ ◦<t 4 τ 1; x 4 τ 2>{ι; ε}

Γ ⊢ s̄ : MetaType〈T̄1〉 Γ ⊢ ē2 : T̄2 ⊢ JT̄1K 4 τ 1 ⊢ JT̄2K 4 τ 2

Γ ⊢ e〈s̄; ē2〉 : s 4 JT̄1K ◦<>{ι[s/t]; ε[s/t]}

ModWireT

Γ ⊢ e1 : T1 ◦<>{ι1; ε1} Γ ⊢ e2 : T2 ◦<>{ι2; ε2} ι = (ι1/Dom(ε2))@ι2

Γ ⊢ e1 ⋉ e2 : T1 . T2 ◦<>{ι; ε1}

ModImageT

Γ ⊢ e : T ◦<>{ι; ε} main() : τ ∈ ε

Γ ⊢ image e : T ◦<>{ι; ε}

Figure 4.14: DScalaness Module Typing Rules

and here is the specification of lifting.

Chapin

ST (p) = l̄ fields(C) = T̄ f̄ l̄
lift
→֒ d, e x fresh

(p, C〈R̄〉)
lift
→֒ d@(JC〈R̄〉K x = {f = e}), x

4.3.4 DScalaness Type Checking

The DScalaness type checking rules adapt the typing rules ofFGJ in their entirety. Refer

to (Igarashi, Pierce, and Wadler 2001) for relevant details. Since type construction via

typedef is syntactic sugar for normal object construction, that is covered by those rules

as well. It remains to define typing rules for DnesT modules and module operations.

102

The DnesT module type form at the DScalaness level isT ◦ µτ , whereµτ is a DnesT

module type. TheT in this form represents the type bounds of dynamically constructed

types that have been used to instantiate the module; this part of the type is referred to as the

instance coercion. Because these types are dynamically constructed, their identity is not

known statically, hence the need to treat them as upper-bounded type names in the static

type analysis. It is important to note that the type names inT will be fully resolved at run

time, so that any module generated by a DScalaness program execution will have a fully

reified DnesT type.

This is reflected in the ModT rule inFigure 4.14, which connects the DnesT typing

system with the DScalaness type system. Since in this case anuninstantiated module def-

inition is being typed, its instance coercion is empty. An instance coercion in a module

type is directly populated when a module is instantiated, asin the ModInstT rule. Here,

the type instances̄s are all dynamically constructed, so they define the upper bounds of

the instantiated module’s instance coercion. All type and value parameters are expected to

respect the typing bounds specified in the module definition.

A subtle but significant detail in this rule is the consequence of dynamically constructed

types having no meaning “as types” at the DScalaness level. This means that no DScalaness

value of that type can be constructed, so dynamically constructed type names do not occur

in the typings of value parameters.

However, dynamically constructed type names do need to be substituted for module

type parameters in the import and export signatures. This ensures that wirings will be

consistent regardless of the actual types eventually computed by the DScalaness program.

A consequence of this is that modules can’t be instantiated with anonymous expressions;

only named type definitions can be used. Those names become part of the module’s type.

The ModWireT typing rule for module wiring is a straightforward reflection of the op-

erational rule for module wiring, as is the ModImageT rule for module runnability imaging.

103

4.3.5 Foundational Insights and Type Safety

Type checking of modules and operations is inspired by the type theory and metatheory

developed for the language〈ML〉 (Liu, Skalka, and Smith 2012). DScalaness module in-

stantiation in particular can be decomposed into a set of〈ML〉 operations, and typeablity of

module instantiation follows from the typeablity of their composition. The language〈ML〉

is obtained by extending systemF≤ with state, dynamic type construction, and staging fea-

tures. The expression〈e〉 is a code value, and thelift operation takes a value at one stage

and “lifts” it to the next, by turning it into code and performing any necessary serialization.

Given this, a DScalaness module with a value and type parameter can be modeled in

〈ML〉 as a term:

λx : ς1.Λt 4 ς2.〈e〉

wherex and t are value and type parameters for the block of code〈e〉. Then, module

instantiation can be modeled as the application of this termto a type and value parameter,

where the latter must be lifted into the next stage:

(λx : ς1.Λt 4 ς2.〈e〉) (lift e) τ

This interpretation of modules and module operations for the purposes of typing is evi-

denced by the DScalaness type formT◦µτ , whereT defines the type bounds for dynamically

constructed types used to instantiate a module. This is directly analogous to∃ type bind-

ings in 〈ML〉 types, which statically define the upper bounds of dynamically constructed

types.

Observing that AFJ, FGJ, and〈ML〉 are all proven type safe, and that DScalaness is

in essence an orthogonal composition of these three languages, the following conjecture

states that type safety is maintained in this composition.

104

Conjecture 4.3.1 (DScalaness Type Safety)If ∅ ⊢ e : T ande →∗ image µ, thenµ is

runnable and does not go wrong.

105

Chapter 5

Scalaness/nesT

This chapter covers the specific details of Scalaness and nesT, the practical realization of

DScalaness and DnesT. First described is nesT along with thedetails of how nesT pro-

grams are transformed into nesC programs. Additionally, included is a description of how

the Scala compiler was modified to provide Scalaness type checking with a minimum of

disruption to the the compiler’s existing functionality. The full source code of a simple

example Scalaness/nesT program is discussed inAppendix A. The use of Scalaness on a

larger example is discussed insection 6.3.

5.1 NesT

NesT is the name give to the second stage language used by the implementation. Roughly

speaking, nesT is the practical realization of DnesT. In particular, nesT uses the syntax

of nesC to the greatest extent possible in order to simplify the compiler and to minimize

the learning burden placed on existing nesC programmers. For example, a nesT module

is specified exactly as a nesC module except that it can onlyuse (import) andprovide

(export) nesC commands. In particular, neither nesC eventsnor nesC interfaces can appear

106

in a nesT component specification.

NesT also supports DnesT’s notion of subtyping and features, for safe memory access

and safe casting. Thus, while nesT programs are syntactically identical (aside from the

new array increment operator), and semantically similar toprograms written in nesC, nesT

programs are more robust than equivalent nesC programs.

NesT type checking implements the rules described insubsection 4.2.3and is largely

straight forward. The intention is to follow nesC’s type system to the greatest extent possi-

ble, with changes to account for stricter rules disallowingimplicit conversions. However,

nesT does support the subtyping rules of DnesT. The details of how nesT type checking

was implemented is described by Watson (Watson 2013).

NesT is implemented as a rewriting to nesC. Because of nesT’sspecial relationship with

nesC, this rewriting is largely trivial. However, the implementation of the special features

of nesT are described in more detail in this section.

The description that follows assumes the reader is familiarwith nesC.

5.1.1 Component Specifications

In nesT components (after specialization) present interfaces that are sequences of imports

and exports. The imports are implemented as nesC commands that are “used” by the com-

ponent and the exports are implemented as nesC commands thatare “provided” by the

component. NesC-style events are not part of nesT but can be simulated using commands;

an event used in nesC becomes a command provided in nesT and vice versa.

NesT does not provide separate interfaces as nesC does. Instead all interaction with

other components is done by way of separately declared commands. These bare commands

can be wired together in the usual way by the nesC compiler (Gay, Levis, von Behren,

Welsh, Brewer, and Culler 2003). Figure 5.1shows a simple example of a nesT module

107

that interacts with a timer. Instead of using an interface with an eventfired , the module

provides a callback command of the same name.

module ExampleC {
uses command void setPeriodic(uint32_t period);
provides command void fired();

}
implementation {

// Written in the nesT subset of nesC.

void f(T param)
{

uint16_t value = x;
}

}

Figure 5.1: Example nesT Module

The example inFigure 5.1also shows the use of an undeclared typeT and valuex . Such

types and values are instead declared as parameters of the module in the Scalaness program.

The Scalaness compiler first adds these parameters to the appropriate environments before

it type checks the nesT module (Watson 2013).

A nesT code base consists of a collection of unspecialized nesT modules. These mod-

ules do not by themselves constitute a complete program. It is the job of the first stage

Scalaness program to specialize and compose the nesT modules, along with supporting

components written in full nesC, into full applications.

NesT currently does not support nesC-style configuration components. Such support

could reasonably be added since the implementation of a component is not important to the

first stage code that manipulates it. The runnable module built by the Scalaness program as

it specializes and composes the constituent nesT modules istransformed by the Scalaness

runtime system into a nesC configuration reflecting the result of composition. However,

this transformation is transparent to the Scalaness programmer. Libraries written in full

108

nesC must be wrapped in components with nesT interfaces as described below in order to

become part of a nesT application.

Each nesT module has a nesT module type implied by its specification element list.

This module type is extracted from the specification elementlist when the nesT component

is type checked. In most cases, except as described below, itis compared against a module

type annotation used in the Scalaness program for the module(seesubsection 5.2.5). Any

discrepancy is flagged by the Scalaness compiler as a type error.

5.1.2 External Libraries

Experiments with nesT show that it is expressive enough to write useful program compo-

nents. However, any realistic application will need to interact with various libraries written

in full nesC, namedexternal libraries. It is not intended here to require the whole pro-

gram be written in nesT, for such a requirement would not be practical. Instead external

libraries could represent low level code such as the TinyOS operating system or high level

application code that wishes to use Scalaness generated nesT modules.

At the time of this writing, neither nesT nor Scalaness provide any direct support for in-

terfacing to external libraries, although such support might be useful future work. However,

a programming technique can be used whereby shim componentsare manually created that

wrap library interfaces. The following is an illustration of that technique using a small

example.

Consider first the TinyOSBoot interface. This interface is used to indicate when a

node is started; all useful nesC programs must interact withit. Yet nesT does not support

interfaces at all, much less some of the entities, such as events, that are commonly declared

in interfaces. Instead the programmer creates a shim component such asBootShimC as

shown below

109

module BootShimC {
uses command void booted();
uses interface Boot;

}
implementation {

event void Boot.booted()
{
call booted();

}
}

The shim component is legal nesC but not legal nesT. Its purpose is to expose all the

commands and events in an external library interface as barecommands. To this end wrap-

per command and event implementations must be manually created.

Although creating shim components is a burden their form is highly stylized. A future

version of the Scalaness compiler might generate them automatically. However, some shim

components are complex and must do additional transformations on command arguments

to interface with the non-nesT external library commands/events. In any case, shim compo-

nents can be reused across nesT applications. Thus it is reasonable to expect programmers

to accumulate a library of shims.

The shim components must be wired to the external library components they wrap.

This is done by producing two nesCwrapping configurations. The first, conventionally

called LibraryIC encapsulates all nesC components that have imports. The second,

conventionally calledLibraryEC , encapsulates all nesC components that have exports.

Normally these are the only two configurations an application needs. If the programmer

has full control over the entire application he or she can addthe necessary external library

components (via their shims) to eitherLibraryIC and/orLibraryEC as appropriate.

For example,Figure 5.2shows an exampleLibraryIC component and an example

LibraryEC component for a hypothetical application that uses the externalMainC com-

ponent and a specific instance of the generic timer module, both from the TinyOS library.

110

Notice that theSpecficTimerC component appears in both wrappers since it both pro-

vides and uses at least one command.

configuration LibraryIC {
uses command void booted();
uses command void fired();

}
implementation {

components MainC, BootShimC, SpecificTimerC;

BootShimC.booted = booted;
BootShimC.Boot -> MainC;

SpecificTimerC.fired = fired;
}

configuration LibraryEC {
provides command void startPeriodic(uint32_t period);

}
implementation {

components SpecificTimerC;

startPeriodic = SpecificTimerC.startPeriodic;
}

Figure 5.2: Example LibraryIC/EC configurations

NesC generic components must be instantiated in nesC configurations and each instance

wrapped in its own shim. InFigure 5.2theSpecificTimerC component is a shim that

wraps a specific instance of the TinyOS generic timer. This limitation may seem restrictive,

but nesT has its own support for genericity although the two mechanisms are independent.

NesT does not support nesC configurations but Scalaness doesallow the components

such as shown inFigure 5.2to be declared and manipulated in Scalaness code. Such

components are represented as Scala objects that extend theNesTComponent trait and

that specify the source file of the nesC configuration using anexternal method as shown

111

in Figure 5.3.

@ModuleType(
"""{}<;>

{ booted() : Void,
fired() : Void; }""")

object LibraryIC extends NesTComponent {
external("LibraryIC.nc")

}

@ModuleType(
"""{}<;>

{ ; startPeriodic(period : UInt32) : Void }""")
object LibraryEC extends NesTComponent {

external("LibraryEC.nc")
}

Figure 5.3: Representation of External Components

The module type of external components cannot be determinedby examining their

definitions since they are not in nesT. However, as with all nesT modules they must be

annotated with their module type in the Scalaness program asshown inFigure 5.3and

discussed further insubsection 5.2.5. For external modules this annotation is accepted

without question by the compiler.

TheLibraryIC andLibraryEC objects are then manipulated in the usual way by

the Scalaness program. BecauseLibraryIC has only imports andLibraryEC has only

exports it is normal for these components to appear at the ends of a wiring chain.Figure 5.4

shows an example where the result module is runnable. InFigure 5.4the+> symbol is the

Scalaness wiring operator.

Although it is not possible to use Scalaness to compose external library components

directly, the programmer is free to create several different wrapping configurations, if de-

sired, and represent each of them separately in the Scalaness program. The Scalaness

112

@ModuleType("""{ checksumType < : UInt32 }
<;>
{ ; }""")

val resultModule =
LibraryIC +>

formattingModule +> checkingModule +>
LibraryEC

Figure 5.4: Wiring nesT Components

program could then dynamically select which wrapping configuration is to be used in the

final generated code. In any case the type system will ensure that illegal wirings can never

be made.

5.1.3 Structure Subtyping

DnesT supports width subtyping of structures as shown inFigure 4.9. To implement this,

nesT supports covariant subtyping of pointers to structuretypes. Ifτ1 andτ2 are structure

types andτ1 4 τ2 according to DnesT subtype rules, thenτ1∗ 4 τ2∗. To implement the

important case of passing a pointer to a structure into a function, the Scalaness compiler

need only add an appropriate cast as it rewrites the nesT to nesC. For example, consider the

nesT code below

struct X {
int a;

};

struct Y {
int a;
int b;

};

void f(struct X *);
struct Y object;
f(&object);

113

The call tof is rewritten tof((struct X*)&object) . The structure layout

rules of nesC guarantee this is safe andf will only manipulate theX subobject of its pa-

rameter.

Like DnesT, nesT has no notation to indicate a subtype relation between structures.

Instead, the judgment is entirely based on structural considerations.

5.1.4 Safe Casts

Since one of the goals of nesT is to promote type safety, no implicit type conversions, aside

from subtype conversions, are provided. Explicit conversions are permitted only when

configured by the programmer. This allows the programmer to define certain casts that are

logical even if they require non-trivial user defined code toexecute.

The Scalaness compiler accepts a configuration file that defines a relation on types

isCompatible. If isCompatible(T1, T2) is true then it is permitted to cast an expression

of type T1 into an expression of typeT2. There are no restrictions on the typesT1 and

T2. However, all such conversions require explicit cast expressions; they are never applied

implicitly. The isCompatiblerelation is the implementation ofcompatiblein the CastT rule

of Figure 4.10.

To illustrate the way these casts are implemented in nesT programs, consider as an

example the following two structure definitions.

struct UserInfo {
char name[25];
int age;
int id;

};

struct UserToken {
int id;
int hash;

};

114

The programmer may wish to allow an object of typeUserInfo to be explicitly cast

into an object of typeUserToken . Assuming the Scalaness configuration file has been

edited to allow this, the Scalaness compiler rewrites each cast expression into a call of a

conventionally named conversion command. These conversion commands exist in a nesC

interfaceDoCast . For example

token = (struct UserToken)user;
// ... rewritten to ...
token = (call DoCast.UserInfo_UserToken(user));

The programmer is required to provide theDoCast interface and a component called

DoCastC that provides that interface and contains an implementation of the various con-

version commands needed. The Scalaness compiler wires toDoCastC automatically with-

out any further programmer intervention.

5.1.5 Array Operations

Each nesT expressiona of array typeArray(T) for some element typeT has a corre-

sponding hidden dynamic value representing the size of the array. Array increment expres-

sions of the forma |> e can nominally be rewritten to nesC using pointer arithmeticas

((a) + (e)) . Let n be the dynamic size of expressiona, thenne, the dynamic size

of a |> e , isne = n− e. This size might be negative but any use of an array expression

with a negative size results in a run time errorat the point of use.

A statement containing one or more array increment expressions or array indexing ex-

pressions is rewritten as a block enclosed sequence of statements containing Scalaness

compiler generated local variables for the dynamic sizes ofthe temporary arrays along

with appropriate run time checks.

For each array increment operationai ⊲ ei in a statement a variable to hold the value

of ei is declared and initialized. This is done so thatei will only be evaluated once; an

115

important consideration in a language, such as nesT, with side effects. Also the dynamic

size of the result of each array operationdi is declared and initialized appropriately. For

example

... (a |> e) ...

Is rewritten without regard to any possible optimizations as:

{
int __e_1 = e;
int __d_1 = __d_0 - __e_1;

... ((a) + __e_1) ...
}

Here__d_0 is the dynamic size associated with the array expressiona. In the com-

mon case wherea is a declared array the size will be known statically and an appropriate

constant can be used instead of a reference to a dynamic size variable.

For each array indexing operationai[ei] in a statement a variable to hold the value ofei

is declared and initialized, as before. A run time check is inserted to ensure that the value

of ei is inside the dynamic size ofai. For example

... a[n] ...

Is rewritten without regard to any possible optimizations as

{
int __e_1 = n;
if (__e_1 >= __d_0) call boundsCheckFailed();
... a[__e_1] ...

}

As before__d_0 is the dynamic size associated with the array expressiona.

In a statement involving multiple array operations, each operation is rewritten as de-

scribed above one at a time. After the first operation is rewritten, the enclosed modified

116

statement is further expanded with the second rewriting. The checks are issued in the order

they are encountered during a depth first left to right traversal of the nesT abstract syntax

tree. For example a statement such as

x = ((a |> e1) |> e2)[b[i]];

Is first rewritten as

{
int __e_1 = e1;
int __d_1 = __d_0 - __e_1;
x = (((a) + __e_1) |> e2)[b[i]];

}

The resulting statement still contains three array operations. The second stage of rewrit-

ing yields

{
int __e_1 = e1;
int __d_1 = __d_0 - __e_1;
{
int __e_2 = e2;
int __d_2 = __d_1 - __e_2;
x = (((a) + __e_1) + __e_2)[b[i]];

}
}

The inner indexing operation is then rewritten

{
int __e_1 = e1;
int __d_1 = __d_0 - __e_1;
{
int __e_2 = e2;
int __d_2 = __d_1 - __e_2;
{

int __e_3 = i;
if (__e_3 >= __d_b) call boundsCheckFailed();
x = (((a) + __e_1) + __e_2)[b[__e_3]];

}

117

}
}

Finally, the outer indexing operation is rewritten in a similar manner, including an ad-

ditional call toboundsCheckFailed .

Functions declared to take an array as a parameter are rewritten so that the dynamic size

of the array is passed as an additional parameter. This parameter becomes thed of array

expressions involving only the parameter. Calls to such functions are rewritten to pass the

additional dynamic size information as appropriate.

The commandboundsCheckFailed must be provided by the programmer in a

component namedBoundsCheckC . The behavior of this command is unspecified but

it should not return. The expectation is that in most cases itwill restart the node after,

perhaps, attempting to log the problem. As withDoCastC the Scalaness compiler auto-

matically wires toBoundsCheckC as appropriate.

The user defined handling of bounds check failure and of explicit casts as described

previously is where the runtime failure semantics of Definition 4.2.3are implemented.

5.2 Scalaness

Scalaness is implemented as a modified Scala compiler (Chapin 2013a) based on the open

source development Scala compiler. The Scala compiler has aplug-in architecture and it

had originally been anticipated that Scalaness could be implemented as a compiler plug-

in. That would have made Scalaness easier to use and maintainand, thus, enhanced the

systems practicability.

Unfortunately, implementing Scalaness as a plug-in met with difficulties. The main

problem was with extending the type checker of Scala to accommodate the Scalaness type

system. The plug-in approach required a complete reimplementation of Scala typing inside

118

the plug-in. This is because plug-ins can only gain control either before Scala typing has

occurred or after it has completed. Consequently, the implementation of the Scalaness

typing rules couldn’t easily benefit from the logic in the existing type checker.

In contrast, building Scalaness as a modified compiler allowed Scalaness type infor-

mation to “piggyback” on the existing type checker infrastructure. In particular, Scalaness

type information was added to the singleton types already created and maintained by the

Scala compiler for each declared value. This information could then be queried at critical

points during the type checking process where Scalaness rules, as shown inFigure 4.14,

were applied (Watson 2013).

Nevertheless, in order to facilitate keeping Scalaness synchronized with future develop-

ments of the main Scala compiler, every attempt was made to implement Scalaness in the

least invasive way possible. Much of the logic, including the new typing rules themselves,

are implemented in separate packages away from the main bodyof the compiler code base.

The instances where it was necessary to insert Scalaness specific code into, for example,

the existing type checker, have been kept to a minimum.

Making radical changes to Scala syntax was not seriously considered. For reasons

of simplicity, it was deemed undesirable to modifyboth the parser and the type checker.

Fortunately Scala has a general mechanism for adding arbitrary information to declarations,

namelyannotations. Scala annotations were used to express nesT module types asstrings

using an arbitrarily chosen syntax designed to be palatableto Scala programmers.

This work’s foundation utilizes Scala 2.10, which also provides an extensive reflec-

tion API and experimental support for expression macros. These facilities allow one to do

abstract syntax tree (AST) transformations on Scala programs using ordinary Scala code.

Macros are described by the Scala community as a kind of “lightweight” plug-in mecha-

nism. Unfortunately, at the time of this writing, type macros are not available so it is not

yet possible to write a macro that outputs a class definition.However, in the future when

119

type macros become available it might be possible to implement some, or all, of Scalaness

as a macro library.

5.2.1 Scala Compiler Organization

The Scala compiler is organized as a number ofphasesthat rewrite the input in successive

steps lowering it to JVM bytecode. The precise phases used can be listed with the com-

mandscalac -Xshow-phases . Of primary significance to Scalaness are the first four

phases used by the stock Scala compiler as shown below.

parser
namer
packageobjects
typer
...

The bulk of the modifications made by Scalaness are in the typer phase. Hooks were

added at critical points in the Scala type checker that call into Scalaness-specific code

in packageedu.uvm.scalaness . Furthermore, a new phase was added between the

parser and namer phases. This new phase is responsible for augmenting certain Scalaness

constructs with their necessary runtime support. This is done by inserting material in the

AST produced by the parser. In principle, that material could have been manually writ-

ten by the programmer but instead is automatically generated as a convenience. It is this

“post-parser” phase that could potentially be eliminated by type macros when they become

available.

5.2.2 Liftable Types

Certain types and their corresponding values that appear ina Scalaness program are liftable

to types and values in the nesT modules manipulated by that program as described in

120

subsection 4.3.3. Values of these types need to be transformed as they cross the bound-

ary between the two programming languages due to differences in the way a liftable type

and its nesT counterpart are represented. This section describes which Scalaness types are

liftable and how their values are handled when used to specialize a nesT module.

Primitive Types

All liftable types except arrays are subtypes of a special marker trait Liftable . The

primitive types in nesT have liftable counterparts in Scalaness that are classes extending

Liftable . For example, the typeuint16 _t in nesT corresponds with classUInt16

in Scalaness. In this implementation there are six primitive, liftable integer types: three

unsigned typesUInt8 , UInt16 , UInt32 , and three corresponding signed integer types.

All of these types have specific sizes; the implementation does not provide a simple integer

type. This avoids issues associated with the machine dependent size ofint in nesC. Fi-

nally, two other liftable primitive types are also provided: Char andUninit (which lifts

to void).

The nesT subtype relations for primtive integers are preserved in Scalaness. In Scalaness

the primtive types types are defined in the objectLiftableTypes so that they don’t con-

flict with any normal (non-liftable) types defined by the programmer or the language, such

asChar . Furthermore, the integer liftable types are endowed with the usual arithmetic

operations so they can be manipulated in the Scalaness program in a natural way.

No conversions are provided between the liftable types and their ordinary Scala analogs.

This means existing libraries that, for example, manipulate ScalaChar objects won’t work

with LiftableTypes.Char . This is not regarded as a problem for two reasons.

1. Since values of liftable type will eventually be written into nesT components, they

will likely be put to very different uses than values of ordinary Scala types. In fact,

121

letting the Scala type system catch inadvertent mixing of ordinary primitives and

liftable primitives could be seen as a desirable feature.

2. Implicit conversions can be easily added by the Scalaness programmer, if desired,

using the normal facilities of Scala.

To facilitate the second point,explicit conversion methods from each liftable type to its

corresponding non-liftable counterpart are provided as a convenience.

The Scala type system is used to ensure compile-time type safety of the primitive

liftable types in a Scalaness program. For example, the typeInt16 can only be con-

structed using a value of Scala’s typeShort . Consequently, normal Scala type checking

prevents a potentially out of range value from being used.

Unfortunately, Scala does not support unsigned types natively. In the current implemen-

tation a sufficiently wide signed type is used to initialize objects of unsigned liftable type.

This makes it possible to use an out-of-range value during the execution of the Scalaness

program resulting in a runtime exception. However, Scala programs are subject to runtime

exceptions for a variety of reasons. It is well outside the scope of this work to address the

problem of how to ensure a Scalaness program never exits by way of an exception.

Arrays

An ordinary Scala array type is liftable if, and only if, its element type is liftable.This

is an exception to the rule stated insection 5.2.2that says all liftable types must extend

Liftable and, thus, arrays are handled in a special way. Yet it is a significant conve-

nience to the programmer to be able to use ordinary Scala arrays, and not some special

“liftable array” class, to hold liftable arrays. This need does not arise for the other con-

tainers in the Scala collections library since those containers have no counterpart in nesT

anyway.

122

For example, the programmer may wish to create and manipulate aList[UInt8]

during the execution of a Scalaness program, but the list itself won’t be liftable. In contrast

the programmer may wish to lift anArray[UInt8] into nesT.

Classes

A Scala classC that extends theLiftable trait is liftable to a nesT structure type pro-

vided it additionally obeys the following inductive rules.

1. C is not generic.

2. All of C ’s fields have liftable type.

3. All of C ’s supertypes (exceptAnyRef andScalaObject) are liftable types.

In this caseC is said to be aliftable class. Except for the rules mentioned here there are

no restrictions on the definition or use of liftable classes.In particular, they are able to have

methods, although the methods of a liftable class have no manifestation in the generated

nesT code and would exist only as a convenience to the Scalaness programmer.

For example, consider the following Scalaness code:

class Header
(val nodeID : nodeIDType,
val componentID : UInt8) extends Liftable

class TimeStampedHeader
(val timeStamp : UInt16) extends Header

HerenodeIDType is a previously defined liftable class type. Consequently, both of

these classes are liftable and have representations as nesTstructure types.

123

5.2.3 Lifting

When nesT modules are specialized by values, the Scala values used to make those spe-

cializations are lifted into the nesT code. For primitive types, occurrences of the value

parameter in the nesT code is simply replaced by a constant representing the actual value

used to specialize the module.

Values with array or structure (class) types are handled differently. In that case the

Scalaness compiler writes a global declaration into the nesT module that defines the value

along with an initializer constructed from the Scala value used to specialize the module.

This follows the semantics described insubsection 4.3.2.

As an example, consider the following Scalaness class representing a nesT module that

does encryption. The module is parameterized by a key value.

@ModuleType(
"""{}

< ; key : Array[UInt8] >
{ ; encrypt(data : Array[UInt8]) : Void }""")

class EncryptorC extends NesTComponent {
"EncryptorC.nt"

}

When this module is instantiated as described insection 5.2.7a Scala array ofUInt8

values is provided. The Scalaness compiler will output, at second stage generation time,

nesT code such as

module EncryptorC {
provides void encrypt(uint8_t data[]);

}
implementation {

// Added by the Scalaness compiler.
uint8_t key[] = { 1, 2, 3, 4 };
// Uses of ’key’ as before.

}

Here{ 1, 2, 3, 4} is a sample value of the key parameter used to instantiate the

124

module. The nesT programmer does not declare the global variablekey in the nesT module

but nevertheless uses the namekey freely in the module. In effect, the nesT programmer is

using the parameter declaration (in the Scalaness code) to guide his/her work. This follows

the behavior of the nesT type checker.

The example above shows the result before the final translation to nesC. During that

translation the Scalaness compiler will also augment the parameter list ofencrypt to

include an additional size parameter for the array as described insubsection 5.1.5.

5.2.4 MetaType

Scalaness allows types to be dynamically constructed. However, the Scala type system

does not directly support using types as values. To work around this limitation, a wrapper

generic classMetaType[T] was explicitly introduced to represent any liftable type that

is a subtype ofT.

class MetaType[+Tau < : Liftable]
(val wrappedType : TypeRepresentation) extends Liftable

Values in the Scalaness program that are intended to hold nesT types that are a subtype

of τ have a Scala type ofMetaType[Tau] . A variance annotation is used to ensure that

MetaType is covariant in its type parameter. This allows flexibility since, for example,

a MetaType[UInt16] value should be usable where aMetaType[UInt32] is ex-

pected. This is sound since the subtype relation is transitive and, for example, any type that

is a subtype ofUInt16 is also a subtype ofUInt32 .

Objects of typeMetaType contain arepresentationof a nesC type. WhileMetaType ’s

type parameter is a Scala type that is liftable to nesT, the value it wraps is a representation

of the already lifted type. ThusMetaType objects form a bridge between the Scalaness

and nesT type systems.

125

5.2.5 Module Type Annotations

Values definitions, method parameters, and method results that are intended to manipulate

nesT component values must be explicitly decorated with a module type annotation. In

this way nesT type information can be made known to the Scalaness compiler without

modifying the Scala parser to understand an extended type language directly. Module type

annotations are string literals that obey the abbreviated syntax inFigure 5.5.

module-type ::=
’{’ existential-binders? ’}’
’<’ type-parameters? ’;’ value-parameters? ’>’
’{’ imports? ’;’ exports? ’>’

existential-binder ::= IDENTIFIER ’<:’ type
type-parameter ::= IDENTIFIER ’<:’ type
value-parameter ::= IDENTIFIER ’:’ type

Figure 5.5: Module Type Syntax

The imports and exports inFigure 5.5are nesT declarations written in a Scala-like

syntax usingArray andPointerTo type constructors to define array and pointer types.

Structure types are specified using{ . . .} syntax to enclose the declarations of structure

members and are prefixed by the structure name.

The following shows a sample of aSendC component parameterized by an integer

type suitable for use as a network address. The component imports a commandradio

that takes a parametermessage of structure type. The component exports a command

send that returns the TinyOS standard error typeerror _t which has built in support in

module type annotations.

@ModuleType(
"""{}

< addrT < : UInt32; >
{ radio(message :

MessageType{src : addrT,

126

dest : addrT,
data : Array[UInt8,64]}) : ErrorT;

send(s : addrT,
d: addrT,
data : Array[UInt8]) : ErrorT }""")

class SendC extends NesTComponent { ...

Annotations, such as above, that are placed on class or object definitions are checked

against the nesT code that implements that component—except for external library com-

ponents as described insubsection 5.1.2. Method parameters, method results, andval and

var definitions also need to be explicitly annotated; Scalanessdoes not support type infer-

ence of nesT types. This does place a considerable burden on the programmer. However, a

type abbreviation scheme has been developed to alleviate this burden (Watson 2013).

In places where module types are required to be annotated, the annotated type is checked

against the actual type derived by the Scalaness type rules in Figure 4.14. Type errors are

reported as necessary.

5.2.6 Component Declarations

Components in nesT can be parameterized by types and values and instantiated multiple

times. These properties are closely modeled by Scala classes. Thus, the representation of a

nesT component in Scalaness is by way of a class that extends aspecialNesTComponent

marker trait.

One might be tempted to allow a syntax such as

class SendC
[Adt < : UInt32, MessageT < : AbstractMessage[Adt]]
(self : Adt) extends NesTComponent {

import error _t radio(MessageT *);

export error _t send(Adt addr, uint8 _t * data) {
MessageT packet = { self, addr, data };

127

radio(&packet);
return SUCCESS;

}
}

This intends to define a Scalaness component using Scala syntax for representing type

and value parameters with the body of the component written in nesT. Unfortunately this

cannot be supported without modifying the Scala parser to accept nesT as well as Scala.

One way to work around the problem of mixed language syntax ispresented by Garcia

(Garcia, Izmaylova, and Schupp 2010) where the “alien” language is included as a string

literal. The Scala type checker would treat the nesT programas having type String but

the additional Scalaness type checking could parse the string literal’s contents and impose

additional typing rules on those contents. However, this approach leads to a rather ungainly

programming style:

class SendC
[Adt < : UInt32, MessageT < : AbstractMessage[Adt]]
(self : Adt) extends NesTComponent {

"""import error _t radio(MessageT *);

export error _t send(Adt addr, uint8 _t * data) {
MessageT packet = { self, addr, data };
radio(&packet);
return SUCCESS;

}"""
}

Since the nesT code implementing a component is often long and complex it makes

sense to allow the programmer to edit and manage that code in tools that are nesC-aware

such as nesC syntax highlighting editors. It is anticipatedthat in many cases different pro-

grammers with very different kinds of expertise will be editing the Scalaness and nesT code

bases. Thus, this implementation uses a string literal to name an external file containing

128

the nesT contents of a component as shown below.

class SendC
[Adt < : UInt32, MessageT < : AbstractMessage[Adt]]
(self : Adt) extends NesTComponent {

"SendC.nt"
}

Conceptually the contents of the named file replace the literal name in the Scalaness

program much as #include directives work in C programs. Thisapproach allows the normal

Scala parser and type checker to process the program successfully. During compilation the

Scalaness extension locates the specified nesT file (SendC.nt above), parses it as nesT

and does nesT type checking on that file using type and value parameters as provided to the

Scalaness class.

Using Scala’s syntax for specifying type and value parameters as shown above is at-

tractive but unfortunately it does not work for Scalaness. There are two problems:

1. It is the intent to allow nesT components to be passed around in a Scalaness program

in an uninstantiated state. In contrast Scala classes are not first class values in Scala.

2. NesT components can have parameters involving dynamicallyconstructed types. In

contrast Scala class parameters must involve only types that are fully specified stati-

cally.

Modifying the Scala compiler to allow dynamically constructed types to appear in dec-

larations and as type parameters was considered, but this required extensive modifications

to the existing Scala type checker and so was rejected as an option. Instead the Scalaness

representation of a nesT component includes a special method instantiate , automati-

cally generated by the compiler, that is used to create instantiated nesT components. That

method accepts the value parameters as ordinary Scala parameters using liftable types, and

129

it accepts the type parameters as ordinary Scala parametersof typeMetaType[T] where

T is liftable. The example above becomes:

class SendC extends NesTComponent {

def instantiate(
Adt : MetaType[UInt32],
MessageT: MetaType[AbstractMessage],
self : UInt32);

"SendC.nt"
}

5.2.7 Runtime Support

In addition to compile-time analysis and type checking, Scalaness programs require support

for nesT module composition (aka “wiring”) at runtime. In this section, an overview of how

this runtime support works is provided. Full details can be found in the documented source

code of Scalaness (Chapin 2013a). Note that the current implementation of Scalaness com-

poses nesT modules and rewrites those modules to nesC in a single, integrated processing

step. The runtime system currently emits nesC directly without the need for any explicit

nesT-to-nesC rewriting.

There are two operations to consider: component composition and component instanti-

ation.

Composition

Each Scalaness class that represents a nesT module is augmented by the Scalaness com-

piler to contain a hidden field that represents a nesC configuration wrapping that single

component.Figure 5.6shows an example of a Scalaness class representing a nesT module

that provides a command for computing checksums on a given array of bytes. This module

130

is parameterized by the type used for the checksum and by the size of the arrays that it

processes.

The code marked inFigure 5.6as being generated by the compiler is not legal Scala as

shown but is presented as an aid to understanding. The compiler actually inserts, during

compilation, a type-correct AST of the necessary code into the AST of the enclosing class.

The Scalaness runtime library, specifically the methods in the inheritedNesTComponent

trait, makes use of this generated code during module composition.

In particular, the generated fieldconfiguration holds the reference to an object

representing a nesC configuration that wraps the nesT module. The imports and exports of

that module are extracted from the abstract syntax tree of the nesT code which is parsed by

the runtime system and is represented byabstractSyntax in Figure 5.6. Note that the

nesT code has already been syntax checked and type checked bythe Scalaness compiler

during the compilation of the Scalaness program. The reparsing done at runtime is thus

guaranteed to succeed.

The named component wrapped by the configuration is made aware of the names of the

type and value parameters. Furthermore, the Scalaness compiler augments the class with

methodsgetTypeMap and getValueMap that return maps associating those names

with additional hidden fields (the definitions of which are not shown inFigure 5.6) holding

the runtime representation of the type and value arguments actually used. This information

is used during module instantiation as described insection 5.2.7.

The method+> inherited fromNesTComponent combines the configurations in its

operands to return a new program component representing theoverall nesC configuration.

It is in the +> method where the operational semantics of wiring is implemented (see

Figure 4.13). The program component returned from+> is flattened in the sense that it

is a single configuration that wires all the named program components (nesT modules) it

contains; a hierarchy of configurations is not created.

131

@ModuleType(
"""{}

< checksumType < : UInt32; size : UInt16 >
{ ; compute _checksum(

data : Array[UInt8]) : checksumType }""")
class ChecksumC extends NesTComponent {

/////////
// Code generated by the Scalaness compiler.
/////////
val configuration =
new ProgramComponentWrapper(
new NamedProgramComponent(

name = "ChecksumC",
enclosingObject = this,
typeParameters = Set("checksumType"),
valueParameters = Set("size"),
imports = extractImports(abstractSyntax),
exports = extractExports(abstractSyntax),
abstractSyntax = abstractSyntax))

def getTypeMap =
Map("checksumType" -> sclnsChecksumType)

def getValueMap =
Map("size" -> sclnsSize)

////////
// END of Scalaness generated code.
////////

"ChecksumC.nt"
}

Figure 5.6: Generated Runtime Support for Composition

132

An image method in theProgramComponent class writes the nesC configuration

implied by the current program component and then iterates over all the named components

serializing their abstract syntax trees to nesC. During this serialization the nesT to nesC

transformations, for example array bounds checks, etc., asdescribed insection 5.1are also

done.

Instantiation

A class representing a nesT component can be instantiated using Scala’s operatornew

like any other class. However, such an instance still has an uninstantiated module type.

Instantiation of a component at the nesT level is done in Scalaness by invoking a compiler

generatedinstantiate method, an example of which is shown inFigure 5.7.

As for Figure 5.6the code shown as generated by the compiler is for illustration only.

The compiler inserts during compilation the AST of the appropriate code into the AST of

the enclosing class.

The instantiate method is provided module type parameters as ScalaMetaType

values, and module value parameters, all of which must have liftable types. The method

creates a fresh Scala instance of the class and stores the module parameters into hidden

fields where they are subsequently used (during imaging) to specialize the module’s body.

A single instance of the Scala class could thus create many different specializations of the

nesT module by way of separate invocations ofinstantiate with potentially different

parameters.

133

@ModuleType(
"""{}

< checksumType < : UInt32; size : UInt16 >
{ ; compute _checksum(

data : Array[UInt8]) : checksumType }""")
class ChecksumC extends NesTComponent {

/////////
// Code generated by the Scalaness compiler.
/////////
private var sclnsChecksumType : MetaType[UInt32] = null
private var sclnsSize : UInt16 = null

def instantiate(
checksumType : MetaType[UInt32], size : UInt16) = {

val result = new ChecksumC
result.sclnsChecksumType = checksumType
result.sclnsSize = size
result

}
////////
// END of Scalaness generated code.
////////

"ChecksumC.nt"
}

Figure 5.7: Generated Instantiate Method

134

Chapter 6

Evaluation

This chapter presents the results of evaluating the performance of Sprocket and Scalaness/

nesT. The results are presented in terms of both simple “toy”programs that explore spe-

cific issues in isolation, and on a larger, realistic application employing trust management

authorization that demonstrates the applicability of the systems in real world scenarios.

6.1 Field Example

To evaluate the performance of SpartanRPC and Scalaness in areal application setting,

both systems are used to implement secure versions of data collection and sampling con-

trol protocols in an environmental monitoring system. The Snowcloud system (Frolik and

Skalka 2013; Moeser, Walker, Skalka, and Frolik 2011) is a wireless sensor network devel-

oped at the University of Vermont for snow hydrology research applications. It is based on

the MEMSIC TelosB mote platform running TinyOS, and has seenmultiple field deploy-

ments. Typical deployed systems comprise 4-8 sensor nodes but the technology is scalable

to arbitrary numbers of nodes. For data collection and sampling rate control, the system

also includes a handheld “Harvester” device. This device incorporates a TelosB mote to

135

Figure 6.1: A Snowcloud Sensor Node (L,C) and Harvester Device (R).

establish a network connection when in radio communicationwith the deployment. Users

transport the device to and from deployment sites, and interact with the sensor node net-

work by issuing commands from a simple push-button interface. A Harvester device and a

deployed Snowcloud sensor tower are pictured inFigure 6.1. The scheme described here

has been implemented and tested in the UVM test network, which uses the same software

and hardware platforms as in the active deployments.

In the secured version of the Snowcloud system, the goal is totreat data collection and

sampling rate control as protected resources requiring authorization. Furthermore, sam-

pling rate modifications should require a higher, “administrator” level of authorization than

data collection. That is, only system engineers should be able to perform control opera-

tions, whereas data end-users making field visits should be able to collect data. Snowcloud

sensor node code in particular makes use of nearly every resource available on the mote—

including timing, sensor I/O, radio messaging, and flash memory, not to mention CPU and

main memory. Thus, it is a robust example of a realistically scaled application.

The system described here is also informative since it can beeasily ported to other

similar application settings. That is, sensor network application settings wherein multiple

users of various authorization levels need to interact withthe same network in control or

136

collection capacities, as mediated by security policy.

A note on secure deployment. In the Sprocket version of the field example, the nodes

are deployed with private keys embedded in ROM. The system isthus as secure as the

tamper-resistence of the nodes permits. However, one scenario visualized with Scalaness

is for the specialized program to be deployed using an over-the-air reprogramming system

such as Deluge. In that case session keys negotiated by the first stage program could be

exposed to eavesdroppers. However, this problem can be mitigated using secure over-the-

air deployment (Dutta, Hui, Chu, and Culler 2006). In any case, Scalaness does notrequire

over-the-air deployment; programming nodes in the lab prior to being physically deployed

would also be a common scenario.

6.2 Sprocket

This section discusses the performance of the programs generated by Sprocket in terms

of both space and time. It begins by evaluating Sprocket using “toy” programs that focus

on specific aspects of the system’s performance. Next the performance of Sprocket on the

field example is discussed. The combined use of public and private key cryptography in the

underlying security protocol is shown to impose a low amortized cost over time, despite

high costs for initial authorizations.

Since many communication chips now support hardware AES encryption, this evalu-

ation demonstrates performance using that feature. In particular, the popular Tmote Sky

wireless sensor mote (moteiv 2006) uses a Chipcon CC2420 transceiver with hardware

encryption. Unfortunately, the standard TOSSIM simulation environment does not model

hardware encryption for TinyOS 2.1 so all tests were performed on real hardware, lim-

iting the tests to small scale configurations. Tmote Sky nodes were used, with 10 KiB

137

of RAM, 48 KiB of ROM and an 8 MHz MSP430 microcontroller running TinyOS 2.1.2

(Community).

The system was exercised using several small test programs.These programs consisted

of a client/server pair where the client repeatedly sent a message containing a 16 bit value

to the server. The purpose of these tests was to explore the overhead induced by the system

with minimal obscuring effects from application logic. Thepercentage overhead observed

with the small programs is thus a worst case overhead.

A demonstration program was also created that implemented the directed diffusion

algorithm (Intanagonwiwat, Govindan, Estrin, Heidemann, and Silva 2003) over several

nodes. This program allowed testing of the behavior of the system in a long-running set-

ting, and exercised the system in a multi-mote, multi-hop network environment. Although

the demonstration program did not perform any significant function, it did show that useful

higher level services can be built on top of SpartanRPC.

6.2.1 Memory Overhead

The Sprocket run time system uses several memory caches to hold key material, creden-

tial information, and the minimum model implied by the set ofknown credentials. These

caches are statically allocated but must be stored in RAM since their contents are dynamic.

Table6.1summarizes the RAM consumption of the various storage areasused by the cur-

rent implementation.

The number of items in each cache are tunable parameters. Theoptimum settings

depend on the intended application. The values in Table6.1 attempt to strike a balance

between usability and flexibility on one hand and excessive memory consumption on the

other. In applications where these needs are more clearly known a priori, the sizes of the

caches can be adjusted to potentially result in lower memoryconsumption.

138

Table 6.1: RAM consumed by various storage areas

Storage Area # Items Bytes/Item Total Bytes

Session Keys (nk) 10 22 220

Public Keys (np) 12 40 480

Credentials (nc) 12 16 192

Model (nm) 16 6 96

Total 988

The justification for the choice of the number of items in eachstorage area is as follows.

Assume a nodeNi offersnsi services and hasmi neighbors. In the worst case a session

key is needed for each service on all ofNi’s neighbors and for every neighbor connecting

toNi’s services. The number of session keysnk is given by

nk =

(

mi
∑

j=1

nsj

)

+minsi

wherensj represents the number of services on neighborj. For example ifNi had five

neighbors each offering one service and ifNi offered one service, the total number of

session keys required would be 10. Sprocket presumes a smallnumber of neighbors with a

small number of services on each node. Notice, however, thatthis does not preclude using

the system in a large network; SpartanRPC is a link-layer protocol and is only concerned

with the immediate neighbors of a node.

The number of public keys is related to the complexity of the access policies used by

the services. The intersection credential mentions three public keys so in the worst case the

number of public keysnp = 3nc wherenc is the number of credentials in the credential

storage. However, the intersection credential is rare and all other credentials only mention

two public keys. This suggests an upper bound closer tonp = 2nc.

In real policies, however, it is necessary for the same public key to be mentioned in

139

more than one credential. For example consider a simple credential chain such asE1.r1 ←

E2.r2, . . . , Ei.ri ← Ei+1.ri+1, . . . , En.rn ← En+1. In this case the number of credentials

is n and the number of unique public keys isn + 1. It appears reasonable to suppose that

in realistic policies the number of credentials and the number of public keys are about the

same. For this reason Sprocket setsnp = nc.

More difficult to judge is the number of credentials involvedin real-world authorization

scenarios. Clearly this will be application specific and will vary widely. However, two

or three credentials needed to establish authorization is areasonable assumption, since

most likely application designers will avoid complicated policies in a resource constrained

setting. Thusnc ≈ 3nd wherend is the number of interacting domains, assuming each

domain provides a single protected service. Assumming thatonly two other domains will

be in the immediate vicinity of a nodeNi, thennd = 3. Sprocket setsnc = 12 to provide

some space for the case when a neighboring domain offers morethan once service.

If every entity defines the same roles and if the policies are such that every entity is

in every role, then the number of model tuples required isnm = nrn
2
p wherenr is the

total number of roles involved. This value is unrealistically large, however. In a system

where access is widely granted (cooperating domains) a valuenm = nrnd would be more

appropriate. Sprocket assumes thatnd is about three and thatnr is about four or five, thus

nm = 16 is used.

Table6.2shows the overall memory consumption of two small client/server pairs. The

baseline pair handle all communication through normal Active Message packets that are

explicitly programmed by the user. The SpartanRPC pair usesSprocket which includes

support for certificate distribution and verification, session key management, authorization

logic, and MAC computations. The Directed Diffusion entry shows the memory consump-

tion of the demonstration program that implements that algorithm.

Although the overhead incurred by the Sprocket runtime system is significant on this

140

Table 6.2: Memory consumption of test programs

Test Program RAM Bytes ROM Bytes

Baseline Client 349 10982

Baseline Server 283 10490

SpartanRPC Client 2222 23108

SpartanRPC Server 2126 23394

Directed Diffusion 3105 27826

test platform, nearly 80% of RAM and 50% of ROM resources are still available. Further-

more, these memory usage numbers scale well to denser neighborhoods and extended RPC

services because many aspects of the runtime system, in particular the RAM reserved for

SpartanRPC, are independent of the number of RPC services inuse.

6.2.2 Transient and Steady State Processor Overhead

The execution performance of Sprocket generated programs displays two distinct behav-

iors. The first is a transient behavior that occurs after a node boots when certificates are

exchanged and session keys are negotiated, on demand, between the new node and its

neighbors. The second is a steady-state behavior that occurs during normal operation. The

transient overhead of Sprocket is large but the steady stateoverhead is not. In a quasi-

static environment, where new nodes enter the network infrequently, the transient costs are

amortized and it is the small, steady state overhead that dominates.

To explore the steady state overhead three tests were conducted.

1. A baseline test where the message handling was done explicitly using traditional

Active Message interfaces.

2. A duties test where Sprocket was used but no authorization was requested. This

141

Table 6.3: Maximum message transfer rate

Test messages/s% Reduction

Baseline 128 –

Duties 119 7.0

MAC 87 32.0

is equivalent to using the authorization componentsACNullC and ASNullC in

Figure 3.9.

3. A MAC test where authorization was requested but where the session key storage

areas were preloaded with appropriate session keys.

Table6.3 shows the maximum rate at which messages could be sent and received by

the test programs mentioned above. Note that the MAC test made use of the hardware as-

sisted AES support provided by the CC2420 radio chip. These results show that maximum

message send rates decrease by a factor of 7% due to the addition of the duties program

logic, and further decreases by a factor of 25% due to MAC calculations. It is noted that

the latter overhead would be incurred in any system using CC2420 MAC calculations.

The transient runtime overhead of this system can be subdivided into three primitive

operations: the time required to transmit and verify a certificate, the time required to build

the minimum model, and the time required to negotiate a session key. Two of these oper-

ations require lengthy public key computations and dominate the transient behavior. Thus

the performance in this regard is closely tied to the performance provided by TinyECC.

TinyECC provides a number of tunable parameters that can be used to optimize perfor-

mance by trading off space and time (Liu and Ning 2008). Since the tests on this system

had no particular application constraints in mind, the TinyECC “out of the box.” was used.

However, TinyECC’s optimizations can be used to tune the performance of the system to

better match a particular application. For example, activating the Shamir Trick cut cer-

142

tificate verification time in half at the expense of increasing RAM usage by nearly 700

bytes.

Table6.4 shows the times required for each of the primitive transientoperations. The

time required to build the minimum model is directly relatedto the number and nature

of the credentials involved. In this test a collection of fiverepresentative credentials that

included at least one of each type was used. In any case this time is entirely negligible

compared to the other transient operations.

Table 6.4: Processing time for transient operations

Operation Time

Certificate Verification 82s

Minimum Model Construction 370µs

Session Key Negotiation 80s

The time quoted for session key negotiation represents the time required for both ne-

gotiating partners to compute the session key. In the current implementation the two ne-

gotiating nodes do this sequentially with the server node computing the session key before

responding to the client node. This was done in case the session key computation failed on

the server to ensure that the client does not falsely believea session key was successfully

negotiated.

6.2.3 Transient Times for Directed Diffusion

As argued above, the overhead imposed by Sprocket is primarily the time the network

spends in an initial transient state when credentials are verified and session keys are ne-

gotiated. Subsequently, the network enters a steady state during which the main cost is a

32% reduction inmaximalmessage send rates due to hardware AES encryption. In order

to evaluate the performance of Sprocket in a realistic application, therefore, the transient

143

times of the demonstration directed diffusion applicationwere quantified. The experiments

elected a single node to repeatedly express an interest and observe how long was required

for that interest to flood the network. This time depends on three major factors:

1. The number of certificates transferred.

2. The number of neighbors for each node.

3. The number of hops to the “far” edge of the network.

Two experiments were conducted, one on a single hop (star) network and another on a

multi-hop (mesh) network.

In the single hop case, transient timeT can be described by the following equation:

T = ncB + V + nnK

whereB is the certificate broadcast interval,V is the certificate verification time,K is

the session key negotiation time,nc is the number of certificates andnn is the number of

neighbors. SinceB was set to 90 seconds, which is greater thanV , certificate verification

for nc certificates takes timencB + V given a 90 second system initialization period. And

since session keys need to be negotiated withnk neighbors in turn,T also comprises a

nnK delay. Table6.5shows the transient time required to flood a network where allnodes

are one-hop neighbors of the root node. Values are given for three different policies with

different numbers of certificates transferred from the rootto the neighbors.

The behavior of the system was explored in a multi-hop environment by creating a

linear mesh network. Each node (except the root) had a singledownstream neighbor. All

nodes were booted simultaneously and the time required for interest information to reach

each node was observed. The policy used required only a single certificate to be transferred

between nodes. Table6.6shows the results of several runs.

144

Table 6.5: Transient time in single hop directed diffusion

neighbors 1 Cert 2 Certs 3 Certs

1 4m03s 5m27s 6m52s

2 5m16s 6m50s 8m24s

3 6m32s 7m57s 9m30s

4 7m50s 9m22s 10m51s

Table 6.6: Transient time in multi-hop directed diffusion

Run 1 hop 2 hops 3 hops

1 4m05s 7m24s 9m10s

2 3m12s 5m12s 6m30s

3 3m57s 7m37s 9m15s

4 4m09s 7m15s 8m49s

Average 3m51s 6m52s 8m23s

145

The reason for variations in transient times over each run was due to a randomized

element in the protocol, specifically a randomized±10% interval in certificate broadcast

times to avoid collisions. In these results it is essential to note that for hops> 2, extra

transient time is comprised solely of session key negotiation times (80s per session key, see

Table6.4) that are forced by duty postings as interests propagate through the network. Cer-

tificates are broadcast and verified in parallel throughout the network upon system bootup,

during the same time period required for the root’s interestto propagate through the first

and second hops.

6.2.4 Snowcloud with Sprocket

To explore the real-world feasibility of using SpartanRPC and Sprocket, the unsecured

versions of the Harvester and sensor node programs described in section 6.1were enhanced

to use SpartanRPC for access control.

To specify and implement the security policies informally described previously, the

sensor network and the Harvester single node “network” wereconsidered as separate secu-

rity domains, each with its own set of credentials. The sensor network is always endowed

with administrator-level credentials. If a Harvester is tobe used by a system engineer, it

is also endowed with administrator-level credentials, whereas a Harvester to be used by a

data end-user is only endowed with user-level credentials.When a Harvester is introduced

to the sensor network, its resource accesses are mediated byits authorization level. Since

credentials are unforgeable, a user-level Harvester can never be used for sensor network

control even if it is reprogrammed.

Sensor nodes within the network possess four credentials, as follows. In these cre-

dentials the Snowcloud domain is abbreviatedSC . Authority to collect data and control

sensors in the network are governed by the rolesSC .Col andSC .Con, respectively. Cre-

146

dential (1), below, says that any node with control authority also has collection authority.

(2) says that nodes in the Snowcloud domain have control authority. (3) says that any en-

tity in a Snowcloud collaborator’sUsr role has collection authority. (4) says that the node

identified byNid is in the Snowcloud domain.

(1) SC .Col ←− SC .Con (2) SC .Con ←− SC .Node

(3) SC .Col ←− SC .Collab.Usr (4) SC .Node ←− NId

When invoking remote services, the node will do so on behalf of the entityNId . It will also

be imaged with theNId private key for session key negotiation.

Any Harvester within the Snowcloud domain is given the credentialSC .Node ←− HId

and theHId private key issued by Snowcloud domain administration. This will provide

that Harvester with collection and control authority in thedomain. For Harvesters to be

provided to collaborators, the Snowcloud administrators issue a credential establishing the

institution as a collaborator, while the institution itself may define and manage policy for

theirUsr role membership. For example, the University of New Hampshire, represented by

RT entityUNH , can be established as a collaborator with credential (5), below, issued by

Snowcloud domain administration, and may specify role membership with the credential

(6) issued by UNH domain administration:

(5) SC .Collab ←− UNH (6) UNH .Usr ←− UsrID

These two credentials, along with theUsrID private key, are imaged on Harvesters used

by UNH collaborators for data collection, but which remain unauthorized for control. Sig-

nificantly UNH could program their own Harvester nodes without the Snowcloud domain

being involved aside from providing credential (5) above. The policy set by UNH to decide

who, exactly, is in theUNH .Usr role is of no concern to the Snowcloud domain adminis-

trators.

147

Implementation

Resources themselves are accessed through a secure commanddissemination protocol, that

is modeled upon the TinyOS Dissemination protocol (as described in TEP 118). In short,

protected RPC services establish network level broadcast channels requiring authorization

for use. Commands are communicated to the network over thesechannels, and different

channels are used for different sorts of commands.

In more detail, command broadcast services can be specified as a duty in a remotable

interface:

interface SpDissemUpdate {
duty void change(command_t new_value);

}

To implement, e.g., the control command channel, the following module can be defined

and included on sensor nodes in the Snowcloud domain:

module ControlDissemC {
provides remote

interface SpDissemUpdate requires "SC.Con";

uses interface SpDissemUpdate as NeighborUpdate;
provides interface ComponentManager;

}
implementation { ... }

In the implementation, the providedSpDissemUpdate interface accepts command

invocations from neighbors, but requires them to be authorized for theSC .Con role. Com-

mands are relayed to all other neighbors (i.e., disseminated) via the usedNeighborUpdate

interface; those neighbors are identified by the providedComponentManager .

To use this component, both sensor and Harvester nodes can configure it through the fol-

lowing component instantiation and wiring, where the component’sNeighborUpdate

interface is wired remotely to neighbors:

148

components ControlDissemC as ControlChan;
activate " * " for

ControlChan.NeighborUpdate ->
[ControlChan].SpDissemUpdate;

Note that a node must be endowed with the appropriate credentials for this wiring to be

useful.

This same code pattern can be used to implement a data collection request channel,

protected by theSC .Col role instead ofSC .Con. In response to an authorized control

command invocation, sensor nodes will modify their behavior appropriately, whereas in

response to authorized data collection requests sensor nodes will report their data using

collection tree protocol (TEP 123) to the Harvester.

Results

Results can be characterized according to both the user experience and to quantitative as-

pects. As detailed insubsection 6.2.2, a one-time transient overhead is imposed for initial

credential exchange and session key negotiation when a Harvester is first introduced to the

network. However, since data collection for a network afterseveral months of deployment

can take up to an hour, this overhead is relatively insignificant. And steady-state over-

head is small, and does not significantly affect data collection rates. Thus, authorized user

experience is not negatively impacted by the addition of security.

From a quantitative perspective, the most important measurements to consider for this

application are RAM and ROM consumption of the unsecure and secured versions of the

Harvester collection protocol. It must be considered whether layering SpartanRPC secu-

rity over a realistic application will overrun the resources available to a node. Relevant

measurements are shown inTable 6.7.

Both RAM and ROM consumption are significantly increased by the addition of Spar-

149

Table 6.7: RAM and ROM comparison for SpartanRPC Snowcloud

Program RAM Bytes ROM Bytes

Unsecure Harvester 2274 24316

Secure Harvester 4771 35834

Unsecure Sensor Node 2868 36254

Secure Sensor Node 5417 48616

tanRPC security to this application. However, these numbers are within operating parame-

ters. Also Sprocket has not yet been optimized so additionalimprovements could likely be

made.

6.3 Scalaness/nesT

The generality of Scalaness makes a full evaluation of the system difficult to interpret.

However, in keeping with the aim to demonstrate trust management in embedded systems,

Scalaness was applied to the problem of supporting trust management in the Snowcloud

application in a manner similar to that described insubsection 6.2.4. It should be noted,

however, that as a general staged programming system, Scalaness can be used for many

purposes; building authorization systems is only one application. Furthermore Scalaness

could be used to support authorization in various ways depending on the trade offs needed

between node efficiency, deployment frequent, and system functionality.

6.3.1 Snowcloud with Scalaness

To demonstrate a staged solution to providing trust management in Snowcloud, a Scalaness

program calledSnowstormwas developed. Snowstorm is intended to be run by each secu-

rity domain participating in a deployment. It targets a conventional machine with Internet

150

Cert/Key

Storage
SH

authorization

key negotiation
SN

Cert/Key

Storage

Harvester SensorBox

Figure 6.2: Running Snowstorm

connectivity and arbitrary resources.

Figure 6.2shows two instances of Snowstorm running,SH andSN , one by each of

two administrative domains.SN is run by the sensor network administrators and is only

interested in generating the sensor node application.SH is run by the collaborating domain

and is only interested in generating the Harvester application. Normally, the two domains

would probably run completely independent Scalaness programs, perhaps using a common

library, but as a convenience during development a single program was created to serve the

needs of both domains.

SN reads the access policy from suitable configuration files (oras entered by the user)

consisting ofRT0 credentials in a convenient syntax.SN andSH run continuously and

communicate via the Internet. Both programs provide an interactive user interface with

features for generating and managing keys, issuing credentials, and storing policy state-

ments and credentials from its peers. As directed by its userSH requests access to node

collection or control resources, causing authorization and session key negotiation to all take

place automatically. Once session keys are available, the user can direct Snowstorm to gen-

erate the appropriate node level program, withSN generating the sensor node program and

SH generating the Harvester program. The nesT modules that will communicate during

stage two execution are specialized with the previously computed session key values.

The development of Snowstorm was a straight forward exercise in software engineer-

ing; most of the program is ordinary Scala. Snowstorm makes use of widely used third

151

party Java libraries for Internet communication and ECC cryptographic operations. Thanks

to the expressive power of the Scala language, it was possible to implement the coreRT0

authorization decision in just 90 lines. Furthermore, although Snowstorm has only a text-

mode interface it would have been a simple matter to endow it with a fully fledged graphical

interface if desired. A majority of Snowstorm development was done without any special-

ized knowledge of embedded systems development, a point of significance since embedded

systems programming often requires different training andexperience from that used by

general application developers.

When asked to generate their node level programs, Snowstormspecializes a few key

nesT modules with key information and then composes those modules to form fully func-

tioning node programs. When deployed to the nodes, these programs behaved as did the

original implementation. Anecdotally the Scalaness type system proved its worth several

times during the development of Snowstorm. The compiler detected improper wirings as

type errors, thus preventing nonsense compositions of nesTmodules.

Snowstorm’s implementation also made extensive use of external nesC libraries. In

fact, the bulk of the original, tested sensor node and Harvester programs were wrapped as

external libraries in the manner described insubsection 5.1.2. NesT modules were created

primarily to hold key material and to interact with the AES encryption hardware on the

CC2420. No significant changes were needed to the existing code base.

6.3.2 Memory Usage

To explore the efficiency of Scalaness generated programs, the memory consumption of the

generated code was measured.Table 6.8shows the results with the memory values of the

Sprocket version shown inTable 6.7duplicated in the “Unstaged” column as a convenience.

The “Savings” are the percent reduction from unstaged to staged secure implemen-

152

Table 6.8: RAM and ROM comparison for Scalaness Snowcloud

Unsecured Unstaged Staged Savings

Sensor ROM 36254 48616 36596 25%

Sensor RAM 2868 5417 3038 44%

Harvester ROM 24316 35834 24436 32%

Harvester RAM 2274 4771 2402 50%

tation, and these numbers demonstrate that the potential for saving both RAM and ROM

space is significant. Unsurprisingly the memory consumed bythe Scalaness generated code

is virtually identical to that used by the unsecured programs. The only overhead injected

into the staged node programs is that required to interact with the AES encryption hardware

and, of course, to hold the negotiated session key material.

From the perspective of user experience, the staged versionof this application is more

convenient, since no initial authorization period is needed when the harvester is first in-

troduced to the network. The staged version also exposes thesystem to fewer bugs and

failures that would be obstacles to the primary goal of data collection. On the other hand

the staged version requires the presence, somewhere in the deployment cycle, of a powerful

machine on which the first stage program can be executed.

153

Chapter 7

Conclusion

This dissertation has described two language-level approaches for providing, for the first

time, trust management style authorization to resource constrained embedded systems. One

approach, SpartanRPC, is based on a remote procedure call discipline with primitives for

specifying authorization requests and requirements. The other approach, Scalaness, makes

use of staged programming to off-load complicated securitycomputations to a higher pow-

ered machine.

As a method for providing distributed trust management to resource constrained sys-

tems, both approaches are feasible. SpartanRPC demands considerable resources on the

devices, limiting the amount of memory and processor time available for application logic.

In particular, SpartanRPC enabled applications exhibit transient start-up times measured

in minutes, although maximum steady-state message transfer rates exhibit a degradation

of only about 30%. In addition, the SpartanRPC runtime system consumes approximately

13 KiB of ROM and 2 KiB of RAM. Despite these significant overheads, realistic applica-

tions can nevertheless use the system as evidenced by the SpartanRPC-enabled version of

the Snowcloud application.

SpartanRPC is fundamentally a link-level protocol. Since the number of neighbors in

154

a typical sensor network remains small as the network grows,the applicability of Spartan-

RPC is only weakly impacted by the total size of the network. The main issue is in the

relatively long session key negotiation time; the first timea message floods the network

an extremely long time may pass before the message reaches the network frontier since

session key negotiations must occur sequentially at each hop.

Scalaness has the potential of greatly reducing the load on the embedded devices. In

a trust management context, with a Scalaness program pre-computing session keys, the

long transient start-up time and large memory overheads of SpartanRPC are all but elim-

inated. The very slow network flooding time experienced by SpartanRPC applications is

also removed. However, The 30% reduction in maximum messagetransfer rate remains.

Scalaness does require a deployment scenario where a more powerful machine is avail-

able to specialize the device programs. In some scenarios the time required to generate and

deploy the specialized node programs might be significant, negating somewhat the advan-

tage in transient start-up time Scalaness has relative to SpartanRPC. However, Scalaness is

a far more flexible system, admitting other kinds of deployment scenarios and application

use-cases besides those available to the more limited SpartanRPC.

Indeed, Scalaness represents a more principled approach togenerating efficient embed-

ded systems software in general, as evidenced by the formal description of the system in

chapter 4and in the foundational〈ML〉 work (Liu, Skalka, and Smith 2012). Scalaness

provides a unique combination of staging with process separation, dynamic type construc-

tion, and a cross-stage type safety conjecture that enable the robust and efficient generation

of many embedded systems applications. In a Scalaness context, the embedded trust man-

agement problem is nothing more than a demonstration application.

Both SpartanRPC and Scalaness are tied to the nesC programming language, either by

extending nesC in the case of SpartanRPC or by translating a specialized language into

nesC in the case of Scalaness. However, the systems described here are not specific to

155

sensor networks and would be applicable in any environment where nesC is used. Fur-

thermore, although nesC was developed for sensor networks,it could be used as a general

purpose embedded systems language.

7.1 Future Work

Possible future directions of this work can be divided into two broad categories: generaliz-

ing the systems and providing additional safety guarantees.

The Sprocket implementation of SpartanRPC is already modular enough to support

alternate (and even multiple, simultaneous) authorization mechanisms. It would be inter-

esting to experiment with richer trust management languages such asRT1 and its variations

to see how expressive a trust management language could be supported on constrained de-

vices. Currently theRT0 authorization logic uses minimal time and space so conceivably

fairly complex trust management languages could be supported without significantly in-

creasing the overall overhead of the system. Notice that thecurrent version of Scalaness

already supports arbitrary trust management languages because the first stage program runs

in an environment with relatively infinite resources.

Sprocket currently supposes that neighboring nodes communicate over a radio link.

However, this assumption is only reflected in the code generated by Sprocket for the stubs

and skeletons. It would be a simple engineering matter to modify Sprocket to generate stubs

and skeletons for some other communication technology suchas TCP/IP or the Controller

Area Network (CAN) bus widely used in automotive embedded systems (Pazul 1999).

SpartanRPC is, however, closely tied to nesC because of the way it defines and uses

dynamic wires. In contrast, the current implementation of Scalaness formally translates

nesT to nesC as it generates the second stage program. This final translation step could

be modified to produce a different language, such as C, with nochange to the founda-

156

tional semantics. This would make the system applicable to alarger group of embedded

developers.

The type safety guarantee provided by Scalaness is valuablebut embedded systems

have other correctness needs as well. Many embedded systemsare used in safety critical

applications where assurance of freedom from runtime errors, such as array bounds over-

flow, is essential. Systems exist that can analyze Ada or C programs to prove freedom from

such errors (Barnes 2000; Cuoq, Kirchner, Kosmatov, Prevosto, Signoles, and Yakobowski

2012) and those systems could conceivably be applied to the output of Scalaness now.

However, it would be an interesting and challenging direction for future work to extend

Scalaness so the programmer could be assured thatall possiblegenerated programs were

free of important classes of runtime errors.

157

Appendix A

Scalaness/nesT Sample

This appendix shows a simple Scalaness/nesT sample. The sample composes two nesT

modules being used as part of a hypothetical communication protocol. One module formats

messages for transmission and the other module computes checksums.

It is reasonable for the checksum module to be separate sincedifferent applications

may wish to use different checksum algorithms. In fact, the Scalaness program could

dynamically select one of several candidate checksum modules as it composes the overall

application, although that feature is not demonstrated here.

Beginning with the Scalaness program itself: In this simpleexample the entire program

is contained in a single Scala object holding the main method. The program begins by

declaring objects representing the wrapped nesC librariesneeded. It then declares classes

representing the nesT components to be used, defines some helper methods, and executes

the main body. Notice that the type abbreviation binders (Watson 2013) are used to intro-

duce convenience objects holding module type information.

This program demonstrates dynamic type construction, nesTmodule type and value

parameters, module instantiation, and wiring. The programalso demonstrates returning a

dynamically constructed type from a Scala method.

158

The full source code is below.

//--- ----
// FILE : Main.scala
// SUBJECT : Scalaness checksum sample.
//--- ----

object Main {

import edu.uvm.nest. _
import edu.uvm.scalaness. _
import LiftableTypes. _

// The Scalaness representation of the library imports.
@ModuleType(

"""{}
<;>
{ booted() : Void,

fired() : Void; }""")
object LibraryIC extends NesTComponent {

external("LibraryIC.nc")
}

// The Scalaness representation of the library exports.
@ModuleType(

"""{}
<;>
{ ; startPeriodic(period : UInt32) : Void }""")

object LibraryEC extends NesTComponent {
external("LibraryEC.nc")

}

// A component for computing checksums.
@ModuleType(

"""{}
< checksumType < : UInt32; size : UInt16 >
{ ; compute _checksum(

data : Array[UInt8]) : checksumType }""")
class ChecksumC extends NesTComponent {

"ChecksumC.nc"

159

}

// A component for creating messages.
@ModuleType(

"""{}
< checksumType < : UInt32; size : UInt16 >
{ compute _checksum(

data : Array[UInt8]) : checksumType,
startPeriodic(period : UInt32) : Void;
booted() : Void,
fired() : Void }""")

class MessageFormatterC extends NesTComponent {
"MessageFormatterC.nc"

}

/ **
* The following method returns a fully instantiated

* nesT module for computing checksums. The precise

* module created depends on runtime information.

* /
def getChecksummer(

size : UInt16, checksumType : MetaType[UInt32]) = {

@ModuleType(
"""{}

< checksumType < : UInt32; size : UInt16 >
{ ; compute _checksum(

data : Array[UInt8]) : checksumType }""")
val CheckSummer = new ChecksumC

@ModuleType(
"""{ checksumType < : UInt32 }

<;>
{ ; compute _checksum(

data : Array[UInt8]) : checksumType }""")
val instCheckSummer =

CheckSummer.instantiate(size, checksumType)

instCheckSummer
}

160

/ **
* The main method obtains configuration information

* from the command line and composes the final

* program.

* /
def main(args : Array[String]) {

// Create type abbreviations for convenience.

// An uninstantiated module type.
val MesgT = new TypeAbbreviation(

"""{}
< checksumType < : UInt32; size : UInt16 >
{ startPeriodic(period : UInt32) : Void,

compute _checksum(
data : Array[UInt8]) : checksumType;

fired() : Void,
booted() : Void }""", List())

// An instantiated module type.
val FormT = new TypeAbbreviation(

"""{ checksumType < : UInt32 }
<;>
{ compute _checksum(

data : Array[UInt8]) : checksumType,
startPeriodic(period : UInt32) : Void;
booted() : Void,
fired() : Void }""", List())

// An instantiated module type.
val CheckT = new TypeAbbreviation(

"""{ checksumType < : UInt32 }
<;>
{ ;

compute _checksum(
data : Array[UInt8]) : checksumType }""",

List())

// A runnable module type.
val ResultT = new TypeAbbreviation(

161

"""{ checksumType < : UInt32 }
<;>
{ ; }""", List())

// Return a MetaType based on command line argument.
def getChecksumType(args : Array[String]) = {

args(0).toInt match {
case 8 =>

println("Selecting 8 bit checksums")
new MetaType[UInt32](NesTTypes.UInt8)

case 16 =>
println("Selecting 16 bit checksums")
new MetaType[UInt32](NesTTypes.UInt16)

case 32 =>
println("Selecting 32 bit checksums")
new MetaType[UInt32](NesTTypes.UInt32)

}
}

// Method that returns a liftable value.
def getSize(args : Array[String]) = {

val size = args(1).toInt
println(s"Selecting $size byte message blocks")
new UInt16(size)

}

if (args.length ! = 2)
println("Usage : Main bit _length block _size")

else {

// Get run time information about types/values.
val desiredChecksumType = getChecksumType(args)
val desiredSize = getSize(args)

// Uninstantiated message formatter.
@TypeAbbr(MesgT)
val MessageFormatter =
new MessageFormatterC

162

// Instantiated message formatter.
@TypeAbbr(FormT)
val formattingModule =

MessageFormatter.instantiate(
desiredSize, desiredChecksumType)

// Compute appropriate checking module.
@TypeAbbr(CheckT)
val checkingModule =

getChecksummer(
desiredSize, desiredChecksumType)

// Wire things together.
@TypeAbbr(ResultT)
val resultModule =

LibraryIC +>
formattingModule +> checkingModule +>

LibraryEC

// Generate the nesT/nesC.
resultModule.image()

}
}

}

Below is the nesT implementation of the checksum module. This version uses a simple

arithmetic summation. It is parameterized by the type used to hold the checksum and by

a value representing the size of the array to be processed. Thus specializations of this

module can only operate on fixed sized arrays, presummably the size of some standard

message format.

// Type : checksumType: Type used to hold a checksum.
// Value: size: Size of the data array to process.
module ChecksumC {

provides command
checksumType compute_checksum(uint8_t data[]);

}
implementation {

163

// Computes a simple checksum over the data array.
command checksumType compute_checksum(uint8_t data[])
{

checksumType sum = 0;
int16_t i;

// Casting from uint16_t to int16_t is explicitly
// enabled in type compatibility relation. The
// compiler uses a built-in implementation of this
// conversion.
//
for(i = 0; i < (int16_t)size; ++i) {

sum += data[i];
}
return sum;

}

}

The listing below illustrates how the Scalaness compiler rewrites the checksum module

to pure nesC in the example program given. This listing also shows the result of type

and value specialization, in this instance implemented by way of simple substitution. This

version of the module was created for 8 bit checksums on eightelement data arrays.

Notice the addition of compiler generated variables to holddynamic size information

for the array expressions. These variables are checked to ensure memory safety as de-

scribed insubsection 5.1.5.

module ChecksumC {
provides {
command uint8_t compute_checksum(

uint8_t data[], uint16_t _sc_data_SIZE);
}
uses {
command void boundsCheckFailed();

}
}
implementation {

164

command uint8_t compute_checksum(
uint8_t data[], uint16_t _sc_data_SIZE)

{
uint8_t sum = 0;
int16_t i;
for(i = 0; i < (int16_t)(8); ++i)
{
{

int _sc_2 = i;
if(_sc_2 >= _sc_data_SIZE)
call boundsCheckFailed();

sum += data[_sc_2];
}
}
return sum;

}

}

The message formatting module constructs a “message” consisting of ascending byte

values and then computes a checksum over that message. Nothing more is done with

the message in this simple demonstration. A more realistic program would then send the

message to an underlying communication module for transmission.

// Type : checksumType: Type used to hold a checksum.
// Value: size: Size of the data array to process.
//
// Main program of the node.
module MessageFormatterC {

uses command
checksumType compute_checksum(uint8_t data[]);

uses command void startPeriodic(uint32_t period);
provides command void booted();
provides command void fired();

}
implementation {

command void booted()
{

165

// Casting from int16_t to uint32_t is explicitly
// enabled in type compatibility relation.
//
call startPeriodic((uint32_t)1000);

}

// Called once per second.
command void fired()
{

uint8_t raw[size];
uint16_t i;
checksumType checksum;

// Construct message.
for(i = 0U; i < size; ++i) {

raw[i] = (i & 0x00FF);
}
checksum = call compute_checksum(raw);

// Other program components are used to send
// the message with checksum.

}

}

The final sample fragment below shows the specialized and rewritten nesC with the

dynamic size of an array expression being passed tocompute checksum .

module MessageFormatterC {
provides {
command void fired();
command void booted();

}
uses {
command void startPeriodic(uint32_t period);
command uint8_t compute_checksum(

uint8_t data[], uint16_t _sc_data_SIZE);
command void boundsCheckFailed();

}
}
implementation {

166

command void booted()
{
call startPeriodic((uint32_t)(1000));

}

command void fired()
{

uint8_t raw[8];
uint16_t i;
uint8_t checksum;
for(i = 0U; i < 8; ++i)
{
{

int _sc_1 = i;
if(_sc_1 >= 8)
call boundsCheckFailed();

raw[_sc_1] = (i & 0x00FF);
}
}
checksum = call compute_checksum(raw, 8);

}

}

167

Bibliography

Abadi, M. (1998). On SDSI’s linked local name spaces.Journal of Computer Secu-

rity 6(1–2), 3–21.

Abadi, M. (2003, June). Logic in access control. InProceedings of the 18th IEEE Sym-

posium on Logic in Computer Sciennce.

Abadi, M., M. Burrows, B. Lampson, and G. Plotkin (1993, September). A calculus

for access control in distributed systems.ACM Transactions on Programming Lan-

guages and Systems 15(4), 706–734.

Ajmani, S., D. E. Clarke, C.-H. Moh, and S. Richman (2002, January). ConChord:

Cooperative SDSI certificate storage and name resolution. In International Workshop

on Peer-to-Peer Systems.

Ancona, D. and E. Zucca (2002). A calculus of module systems.Journal of functional

programming 11, 91–132.

Barnes, J. (2000, December). The spark way to correctness isvia abstraction.Ada

Lett. XX(4), 69–79.

Bauer, L., M. A. Schneider, and E. W. Felten (2002, August). Ageneral and flexible

access-control system for the web. InProceedings of the 11th USENIX Security Sym-

posium, pp. 93–108.

168

Becker, M. Y. and P. Sewell (2004, June). Cassandra: Flexible trust management, ap-

plied to electronic health records. InProceedings of the 17th IEEE Computer Secu-

rity Foundations Workshop.

Bergstrom, E. and R. Pandey (2007). Anycast-RPC for wireless sensor networks. InPro-

ceedings of the IEEE international conference on mobil adhoc and sensor systems,

pp. 1–8.

Bertino, E., B. Catania, E. Ferrari, and P. Perlasca (2003, February). A logical frame-

work for reasoning about access control models.ACM Transactions on Information

and System Security 6(1), 71–127.

Bertoni, G., L. Breveglieri, and M. Venturi (2006). ECC hardware coprocessors for 8-bit

systems and power consumption considerations.itng 00, 573–574.

Blaze, M., J. Feigenbaum, J. Ioannidis, and A. D. Keromytis (1999, September).RFC-

2704: The KeyNote Trust-Management System Version 2. Internet Engineering Task

Force.

Blaze, M., J. Feigenbaum, and J. Lacy (1996, May). Decentralized trust management.

In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 164–173.

IEEE Computer Society Press.

Blaze, M., J. Feigenbaum, and M. Strauss (1998). Compliancechecking in the policy-

maker trust management system. InProceedings of the 2nd International Conference

on Financial Cryptography, pp. 254–274. Springer-Verlag.

Blaze, M., J. Ioannidis, and A. D. Keromytis (2002, May). Trust management for IPsec.

ACM Transactions on Information and System Security 5(2), 95–118.

Blaze, M., J. Ioannidis, and A. D. Keromytis (2003, May). Experience with the keynote

trust management system: Applications and future directions. InProceedings of the

169

1st International Conference on Trust Management, Keraklion, Crete, Greece, pp.

284–300. Springer-Verlag.

Brogi, A., R. Popescu, F. Gutiérrez, P. López, and E. Pimentel (2008, April). A service-

oriented model for embedded peer-to-peer systems.Electron. Notes Theor. Comput.

Sci. 194, 5–22.

Brooks, R. R., P. Ramanathan, and A. M. Sayeed (2003, August). Distributed target

classification and tracking in sensor networks.Proceedings of the IEEE 91(8), 1163–

1171.

Burrows, M., M. Abadi, and R. M. Needham (1990, February). A logic of authentica-

tion. ACM Transactions on Computer Systems 8(1), 18–36.

Canetti, R., J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas (1999, mar).

Multicast security: a taxonomy and some efficient constructions. InINFOCOM ’99.

Eighteenth Annual Joint Conference of the IEEE Computer andCommunications

Societies. Proceedings. IEEE, Volume 2, pp. 708 –716 vol.2.

Cardelli, L. (1997). Program fragments, linking, and modularization. InProceedings

of the 24th ACM SIGPLAN-SIGACT symposium on principles of programming lan-

guages, POPL ’97, New York, NY, USA, pp. 266–277. ACM.

Cardelli, L. and P. Wegner (1985, December). On understanding types, data abstraction,

and polymorphism.ACM Comput. Surv. 17(4), 471–523.

Çamtepe, S. A. and B. Yener (2005). Key distribution mechanisms for wireless sensor

networks: a survey. Technical Report TR-05-07, RensselaerPolytechnic Institute.

Chapin, P. (2013a, October). Scalaness home page. https://github.com/pchapin/scala.

Accessed October 2013.

Chapin, P. (2013b, October). Sprocket home page. https://github.com/pchapin/sprocket.

170

Accessed October 2013.

Chapin, P. and C. Skalka (2010, November). SpartanRPC: Secure WSN middleware for

cooperating domains. InProceedings of the Seventh IEEE International Conference

on Mobile Ad-hoc and Sensor Systems.

Chapin, P. and C. Skalka (2013). Spartan RPC. Tech-

nical report, University of Vermont. Submitted.

http://www.cs.uvm.edu/ ˜ skalka/skalka-pubs/chapin-skalka-spartanrpctr.

Chapin, P., C. Skalka, S. Smith, and M. Watson (2013, October). Scalaness/nesT. type

specialized staged programming for sensor networks. InProceedings of the 12th

International Conference on Generative Programming: Concepts and Experiences

(GPCE ’13).

Chapin, P. C., C. Skalka, and X. S. Wang (2008, August). Authorization in trust man-

agement: Features and foundations.ACM Computing Surveys 40, 9:1–9:48.

Chen, M., S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung (2011, April). Body area

networks: A survey.Mob. Netw. Appl. 16(2), 171–193.

Cheong, E. (2007).Actor-Oriented Programming for Wireless Sensor Networks. Ph. D.

thesis, University of California, Berkeley.

Chlipala, A. (2010). Ur: Statically-typed metaprogramming with type-level record com-

putation. InPLDI.

Clarke, D., J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,and R. L. Rivest (2001).

Certificate chain discovery in SPKI/SDSI.Journal of Computer Security 9(4), 285–

322.

Claycomb, W. R. and D. Shin (2011, January). A novel node level security policy frame-

work for wireless sensor networks.J. Netw. Comput. Appl. 34(1), 418–428.

171

http://www.cs.uvm.edu/~skalka/skalka-pubs/chapin-skalka-spartanrpctr.pdf

Community, T. TinyOS community forum. http://www.tinyos.net/. Accessed November

2013.

Consel, C., L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N. Volanschi, J. Lawall, and

J. Noyé (1998, September). Tempo: specializing systems applications and beyond.

ACM Comput. Surv. 30(3es).

Costa, P., L. Mottola, A. L. Murphy, and G. P. Picco (2007). Programming wireless

sensor networks with the teenylime middleware. InProceedings of the ACM/I-

FIP/USENIX 2007 International Conference on Middleware, Middleware ’07, New

York, NY, USA, pp. 429–449. Springer-Verlag New York, Inc.

Cremet, V., F. Garillot, S. Lenglet, and M. Odersky (2006). Acore calculus for scala

type checking. InProceedings of the 31st international conference on Mathemat-

ical Foundations of Computer Science, MFCS’06, Berlin, Heidelberg, pp. 1–23.

Springer-Verlag.

Culler, D., D. Estrin, and M. Srivastava (2004, August). Guest editors’ introduction:

Overview of sensor networks.Computer 37(8), 41–49.

Cuoq, P., F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski (2012).

Frama-c: a software analysis perspective. InProceedings of the 10th international

conference on Software Engineering and Formal Methods, SEFM’12, Berlin, Hei-

delberg, pp. 233–247. Springer-Verlag.

DeTreville, J. (2002). Binder, a logic-based security language. InProceedings of the

2002 IEEE Symposium on Security and Privacy. IEEE Computer Society.

Diffie, W. and M. Hellman (2006, September). New directions in cryptography.IEEE

Trans. Inf. Theor. 22(6), 644–654.

Dutta, P. K., J. W. Hui, D. C. Chu, and D. E. Culler (2006). Securing the deluge network

172

programming system. InIPSN, pp. 326–333.

Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas, andT. Ylonen (1999, Septem-

ber).RFC-2693: SPKI Certificate Theory. Internet Engineering Task Force.

Ferraiolo, D. and R. Kuhn (1992). Role-based access controls. In15th NIST-NCSC Na-

tional Computer Security Conference, pp. 554–563.

Flatt, M. and M. Felleisen (1998). Units: Cool modules for HOT languages. InPLDI.

Fletcher, J. G. (1982, jan). An arithmetic checksum for serial transmissions.Communi-

cations, IEEE Transactions on 30(1), 247 – 252.

Fok, C.-L., G.-C. Roman, and C. Lu (2009, July). Agilla: A mobile agent middleware

for self-adaptive wireless sensor networks.ACM Trans. Auton. Adapt. Syst. 4, 16:1–

16:26.

Fouladgar, S., B. Mainaud, K. Masmoudi, and H. Afifi (2006). Tiny 3-tls: a trust delega-

tion protocol for wireless sensor networks. InProceedings of the Third European

conference on Security and Privacy in Ad-Hoc and Sensor Networks, ESAS’06,

Berlin, Heidelberg, pp. 32–42. Springer-Verlag.

Frolik, J. and C. Skalka (2013). Snowcloud. Tech-

nical report, University of Vermont. Submitted.

http://www.cs.uvm.edu/ ˜ skalka/skalka-pubs/frolik-skalka-snowcloudtr.p

Ganeriwal, S., C. Pöpper, S.Čapkun, and M. B. Srivastava (2008, July). Secure time

synchronization in sensor networks.ACM Trans. Inf. Syst. Secur. 11(4), 23:1–23:35.

Gao, T., C. Pesto, L. Selavo, Y. Chen, J. G. Ko, J. H. Lim, A. Terzis, A. Watt, J. Jeng,

B.-R. Chen, K. Lorincz, and M. Welsh (2008, may). Wireless medical sensor net-

works in emergency response: Implementation and pilot results. In Technologies for

Homeland Security, 2008 IEEE Conference on, pp. 187–192.

173

http://www.cs.uvm.edu/~skalka/skalka-pubs/frolik-skalka-snowcloudtr.pdf

Garcia, M., A. Izmaylova, and S. Schupp (2010, July). Extending scala with database

query capability.The Journal of Object Technology 9(4), 45–68.

Gay, D., P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler (2003). The nesC

language: A holistic approach to networked embedded systems. In Proceedings of

the ACM SIGPLAN 2003 conference on Programming language design and imple-

mentation, PLDI ’03, New York, NY, USA, pp. 1–11. ACM.

Ghelli, G. and B. Pierce (1998). Bounded existentials and minimal typing.Theoretical

Computer Science 193(1-2), 75 – 96.

González-Valenzuela, S., M. Chen, and V. C. Leung (2010, December). Programmable

middleware for wireless sensor networks applications using mobile agents.Mob.

Netw. Appl. 15, 853–865.

Gregor, D., J. Järvi, J. G. Siek, G. D. Reis, B. Stroustrup, and A. Lumsdaine (2006).

Concepts: Linguistic support for generic programming in C++. In OOPSLA.

Grossman, D. J. (2003).Safe Programming at the C Level of Abstraction. Ph. D. thesis,

Cornell University.

Gummadi, R., O. Gnawali, and R. Govindan (2005). Macro-programming wireless sen-

sor networks using kairos. In V. Prasanna, S. Iyengar, P. Spirakis, and M. Welsh

(Eds.),Distributed Computing in Sensor Systems, Volume 3560 ofLecture Notes in

Computer Science, pp. 466–466. Springer Berlin / Heidelberg.

Gunter, C. A. and T. Jim (1997, September). Design of an application-level security

infrastructure. InProceedings of the DIMACS Workshop on Design and Formal Ver-

ification of Security Protocols.

Gunter, C. A. and T. Jim (2000a, January). Generalized certificate revocation. InPro-

ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

174

ming Languages, pp. 316–329.

Gunter, C. A. and T. Jim (2000b). Policy-directed certificate retrieval.Software: Practice

& Experience 30(15), 1609–1640.

Gupta, V., M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, andS. C. Shantz (2005).

Sizzle: A standards-based end-to-end security architecture for the embedded internet

(best paper). InPERCOM ’05: Proceedings of the Third IEEE International Con-

ference on Pervasive Computing and Communications, Washington, DC, USA, pp.

247–256. IEEE Computer Society.

Halpern, J. and R. van der Meyden (1999). A logic for SDSI’s linked local name spaces.

In Proceedings of the 12th IEEE Computer Security FoundationsWorkshop, pp.

111–122.

Hammond, K. and G. Michaelson (2003). Hume: A domain-specific language for real-

time embedded systems. InGPCE, pp. 37–56. Springer-Verlag.

Herzberg, A., Y. Mass, J. Michaeli, D. Naor, and Y. Ravid (2000, May). Access control

meets public key infrastructure, or: Assigning roles to strangers. InProceedings of

the IEEE Symposium on Security and Privacy.

Hong, F., X. Zhu, and S. Wang (2005). Delegation depth control in trust-management

system. InProceedings of the 19th International Conference on Advanced Informa-

tion Networking and Applications, pp. 411–414. IEEE Computer Society Press.

Howell, J. and D. Kotz (2000). A formal semantics for SPKI. Technical Report 2000-

363, Dartmouth College.

Hu, W., P. Corke, W. C. Shih, and L. Overs (2009). secFleck: A public key technology

platform for wireless sensor networks. InEWSN ’09: Proceedings of the 6th Eu-

ropean Conference on Wireless Sensor Networks, Berlin, Heidelberg, pp. 296–311.

175

Springer-Verlag.

Hu, W., H. Tan, P. Corke, W. C. Shih, and S. Jha (2010, August).Toward trusted wireless

sensor networks.ACM Trans. Sen. Netw. 7, 5:1–5:25.

Hui, J., P. Levis, and D. Moss (2008, June). TinyOS 802.15.4 frames.

http://www.tinyos.net/tinyos-2.x/doc/html/tep125.html. Accessed December 2011.

Hui, J. W. and D. Culler (2004). The dynamic behavior of a datadissemination protocol

for network programming at scale. InSenSys ’04: Proceedings of the 2nd interna-

tional conference on Embedded networked sensor systems, New York, NY, USA, pp.

81–94. ACM.

Igarashi, A., B. C. Pierce, and P. Wadler (2001). Featherweight Java: a minimal core

calculus for Java and GJ.ACM Trans. Program. Lang. Syst. 23(3), 396–450.

Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemann, and F. Silva (2003, feb).

Directed diffusion for wireless sensor networking.Networking, IEEE/ACM Trans-

actions on 11(1), 2–16.

International Telecommunications Union (2000).Information Technology - Open Sys-

tems Interconnection - The Directory: Public Key and Attribute Certificate Frame-

works. International Telecommunications Union.

International Telecommunications Union (2001).Information Technology - Open Sys-

tems Interconnection - The Directory: Overview of Concepts, Models, and Services.

International Telecommunications Union.

ISO (2008). Iso/iec 1170-3:2008 information technology – security techniques – key

management – part 3: Mechanisms using asymmetric techniques.

Jaffar, J. and M. J. Maher (1994). Constraint logic programming: A survey.Journal of

Logic Programming 19/20, 503–581.

176

Jim, T. (2001). SD3: A trust management system with certifiedevaluation. InProceed-

ings of the 2001 IEEE Symposium on Security and Privacy. IEEE Computer Soceity.

Jim, T. and D. Suciu (2001). Dynamically distributed query evaluation. InProceedings

of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, New York, NY, USA, pp. 28–39. ACM Press.

Jung, W., S. Hong, M. Ha, Y.-J. Kim, and D. Kim (2009). Ssl-based lightweight se-

curity of ip-based wireless sensor networks.Advanced Information Networking and

Applications Workshops, International Conference on 0, 1112–1117.

Karlof, C., N. Sastry, and D. Wagner (2004). TinySec: a link layer security architecture

for wireless sensor networks. InSenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems, New York, NY, USA, pp. 162–

175. ACM.

Karlof, C. and D. Wagner (2003, September). Secure routing in wireless sensor net-

works: Attacks and countermeasures.Elsevier’s AdHoc Networks Journal, Special

Issue on Sensor Network Applications and Protocols 1(2–3), 293–315.

Kumar, S. S. and C. Paar (2006, July). Are standards compliant elliptic curve cryptosys-

tems feasible on rfid? InProceedings of the 2006 Workshop on RFID security.

Lee, Y. K., K. Sakiyama, L. Batina, and I. Verbauwhede (2008,nov.). Elliptic-curve-

based security processor for RFID.Computers, IEEE Transactions on 57(11), 1514

–1527.

Leroy, X. (2006). Formal certification of a compiler back-end, or: programming a com-

piler with a proof assistant. In33rd symposium Principles of Programming Lan-

guages, pp. 42–54. ACM Press.

Levis, P. TEP-111: messaget. http://www.tinyos.net/tinyos-2.x/doc/html/tep111.html.

177

Accessed August 2011.

Li, N. (2000, July). Local names in SPKI/SDSI. InProceedings of the 13th IEEE Com-

puter Security Foundations Workshop, Cambridge, UK, pp. 2–15. IEEE Computer

Society Press.

Li, N. and J. Feigenbaum (2001). Nonmonotonicity, user interfaces, and risk assess-

ment in certificate revocation. InProceedings of the 5th International Conference on

Financial Cryptography (FC01, pp. 166–177. Springer-Verlag.

Li, N. and J. Feigenbaum (2002). Nonmonotonicity, user interfaces, and risk assess-

ment in certificate revocation. InProceedings of the 5th International Conference on

Financial Cryptography, London, UK, pp. 166–177. Springer-Verlag.

Li, N., B. N. Grosof, and J. Feigenbaum (2003, February). Delegation logic: A logic-

based approach to distributed authorization.ACM Transactions on Information and

System Security 6(1), 128–171.

Li, N. and C. Mitchell (2006). Understanding spki/sdsi using first-order logic.Interna-

tional Journal of Information Security 5(1), 48–64.

Li, N. and J. C. Mitchell (2003a, January). Datalog with constraints: A foundation for

trust management languages. InProceedings of the Fifth International Symposium

on Practical Aspects of Declarative Languages.

Li, N. and J. C. Mitchell (2003b, Apr). RT: A role-based trust-management framework.

In Proceedings of the 3rd DARPA Information Survivability Conference and Exposi-

tion, pp. 201–212. IEEE Computer Society Press.

Li, N., J. C. Mitchell, and W. H. Winsborough (2002, May). Design of a role-based trust-

management framework. InProceedings of the 2002 IEEE Symposium on Security

and Privacy, pp. 114–130. IEEE Computer Society Press.

178

Li, N., J. C. Mitchell, and W. H. Winsborough (2005, May). Beyond proof-of-

compliance: Security analysis in trust management.Journal of the ACM 52(3), 474–

514.

Li, N., W. H. Winsborough, and J. C. Mitchell (2003, Feb). Distributed chain discovery

in trust management.Journal of Computer Security 11(1), 35–86.

Liu, A. and P. Ning (2008). Tinyecc: A configurable library for elliptic curve cryptogra-

phy in wireless sensor networks. InProceedings of the 7th international conference

on Information processing in sensor networks, IPSN ’08, Washington, DC, USA,

pp. 245–256. IEEE Computer Society.

Liu, Y., C. Skalka, and S. Smith (2012). Type-specialized staged programming with

process separation.Higher-Order and Symbolic Computation 24(4), 341–385.

Liu, Y. D., C. Skalka, and S. Smith (2009). Type-specializedstaged programming with

process separation. InProceedings of the 2009 ACM SIGPLAN workshop on Generic

programming, WGP ’09, New York, NY, USA, pp. 49–60. ACM.

Liu, Y. D. and S. Smith (2002, July). A component security infrastructure. InProceed-

ings of the 2002 Foundations of Computer Security Workshop.

Lorincz, K., D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A.Clavel, V. Shnayder,

G. Mainland, M. Welsh, and S. Moulton (2004). Sensor networks for emergency

response: Challenges and opportunities.IEEE Pervasive Computing 3(4), 16–23.

Luk, M., G. Mezzour, A. Perrig, and V. Gligor (2007). MiniSec: a secure sensor net-

work communication architecture. InIPSN ’07: Proceedings of the 6th international

conference on Information processing in sensor networks, New York, NY, USA, pp.

479–488. ACM.

MacQueen, D. (1984). Modules for Standard ML. InProceedings of ACM Conference

179

on Lisp and Functional Programming.

Madden, S., M. J. Franklin, J. M. Hellerstein, and W. Hong (2002). TAG: a Tiny AGgre-

gation service for ad-hoc sensor networks.SIGOPS Oper. Syst. Rev. 36(SI), 131–146.

Mainland, G. (2012). Explicitly heterogeneous metaprogramming with MetaHaskell. In

ICFP.

Mainland, G., G. Morrisett, and M. Welsh (2008). Flask: staged functional program-

ming for sensor networks. InProceeding of the 13th ACM SIGPLAN international

conference on functional programming, ICFP ’08, New York, NY, USA, pp. 335–

346. ACM.

Malan, D. J., M. Welsh, and M. D. Smith (2008, September). Implementing public-key

infrastructure for sensor networks.ACM Trans. Sen. Netw. 4, 22:1–22:23.

Manzo, M., T. Roosta, and S. Sastry (2005). Time synchronization attacks in sensor

networks. InProceedings of the 3rd ACM workshop on Security of ad hoc and sensor

networks, SASN ’05, New York, NY, USA, pp. 107–116. ACM.

May, T. D., S. H. Dunning, G. A. Dowding, and J. O. Hallstrom (2007, March). An RPC

design for wireless sensor networks.International Journal of Pervasive Computing

and Communications 2(4), 384–397.

McDaniel, P. and A. D. Rubin (2001). A response to ”can we eliminate certificate re-

vocation lists?”. InProceedings of the 4th International Conference on Financial

Cryptography, London, UK, pp. 245–258. Springer-Verlag.

Mitchell, J., S. Meldal, and N. Madhav (1991). An extension of standard ML modules

with subtyping and inheritance. InPOPL.

Moeser, C. D., M. Walker, C. Skalka, and J. Frolik (2011). Application of a wireless

sensor network for distributed snow water equivalence estimation. InWestern Snow

180

Conference.

Molhave, T. and L. H. Petersen (2005). Assignment Featherweight Java: Bringing mu-

table state to Featherweight Java. Master’s thesis, University of Aarhus.

moteiv (2006, November). Tmote sky low power wireless sensor module. Datasheet.

Mottola, L. and G. P. Picco (2011, April). Programming wireless sensor networks: Fun-

damental concepts and state of the art.ACM Computing Surveys 43, 19:1–19:51.

Newton, R., G. Morrisett, and M. Welsh (2007). The regiment macroprogramming sys-

tem. InProceedings of the 6th international conference on Information processing

in sensor networks, IPSN ’07, New York, NY, USA, pp. 489–498. ACM.

Nikander, P. and L. Viljanen (1998). Storing and retrievinginternet certificates. InPro-

ceedings of the Third Nordic Workshop on Secure IT Systems.

OASIS (2006a). OASIS eXtensible Access Con-

trol Markup Language Technical Committee at

http://www.oasis-open.org/committees/tc_home.php?wg _abbrev=xacml .

OASIS (2006b). OASIS Security Services Technical Committee at

http://www.oasis-open.org/committees/tc_home.php?wg _abbrev=security

OASIS (2006c). OASIS Web Services Security Technical Committee at

http://www.oasis-open.org/committees/tc_home.php?wg _abbrev=wss .

Odersky, M., L. Spoon, and B. Venners (2011).Programming in Scala, second edition.

Artima, Inc.

Pazul, K. (1999). Controller area network (can) basics.Microchip Technology Inc. Pre-

liminary DS00713A-page 1.

Perillo, M. and W. Heinzelman (2005).Fundamental Algorithms and Protocols for Wire-

less and Mobile Networks, Chapter Wireless Sensor Network Protocols, pp. 813–

181

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

842. CRC Hall.

Perrig, A., J. Stankovic, and D. Wagner (2004). Security in wireless sensor networks.

Communications of the ACM 47(6), 53–57.

Polakow, J. and C. Skalka (2006, June). Specifying distributed trust management in

LolliMon. In Proceedings of the ACM Workshop on Programming Languages and

Analysis for Security.

Raymond, D. and S. Midkiff (2008, jan.-march). Denial-of-service in wireless sensor

networks: Attacks and defenses.Pervasive Computing, IEEE 7(1), 74 –81.

Reinhardt, A., P. Mogre, and R. Steinmetz (2011, march). Lightweight remote proce-

dure calls for wireless sensor and actuator networks. InPervasive Computing and

Communications Workshops (PERCOM Workshops), 2011 IEEE International Con-

ference on, pp. 172 –177.

Rivest, R. L. (1998a). Can we eliminate certificate revocation lists? InProceedings

of the 2nd International Conference on Financial Cryptography, London, UK, pp.

178–183. Springer-Verlag.

Rivest, R. L. (1998b). Can we eliminate certificate revocations lists? InProceedings of

the Second International Conference on Financial Cryptography, London, UK, pp.

178–183. Springer-Verlag.

Rivest, R. L. and B. Lampson (1996, October). SDSI — A

Simple Distributed Security Infrastructure. Version 1.1, at

http://theory.lcs.mit.edu/ ˜ rivest/sdsi11.html , October 2,

1996.

Rompf, T. and M. Odersky (2010). Lightweight modular staging: a pragmatic approach

to runtime code generation and compiled dsls. InProceedings of the ninth interna-

182

http://theory.lcs.mit.edu/~rivest/sdsi11.html

tional conference on Generative programming and componentengineering, GPCE

’10, New York, NY, USA, pp. 127–136. ACM.

Sandhu, R. S., E. J. Coyne, H. L. Feinstein, and C. E. Youman (1996). Role-based access

control models.Computer 29(2), 38–47.

Seamons, K., M. Winslett, and T. Yu (2001, February). Limiting the disclosure of access

control policies during automated trust negotiation. InProceedings of the Symposium

on Network and Distributed System Security.

Seamons, K., M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and L. Yu

(2002). Requirements for policy languages for trust negotiation. InProceedings of

the 3rd International Workshop on Policies for DistributedSystems and Networks,

Washington, DC, USA, pp. 68. IEEE Computer Society.

Seepold, R., N. M. Madrid, J. S. Gómez-Escalonilla, and A. R. Nieves (2009, January).

An embedded software platform for distributed automotive environment manage-

ment.EURASIP J. Embedded Syst. 2009, 5:1–5:10.

Sheard, T. and S. P. Jones (2002, December). Template meta-programming for haskell.

SIGPLAN Not. 37, 60–75.

Shnayder, V., B.-r. Chen, K. Lorincz, T. R. F. F. Jones, and M.Welsh (2005). Sensor

networks for medical care. InProceedings of the 3rd international conference on

Embedded networked sensor systems, SenSys ’05, New York, NY, USA, pp. 314–

314. ACM.

Simon, R. T. and M. E. Zurko (1997, June). Separation of duty in role-based environ-

ments. InProceedings of the 10th IEEE Computer Security FoundationsWorkshop,

pp. 183–194. IEEE Computer Society Press.

Skalka, C., X. S. Wang, and P. Chapin (2007). Risk managementfor distributed autho-

183

rization.Journal of Computer Security 15(4), 447–489.

Society, I. C. (2003, October). IEEE std. 802.15.4 - 2003: Wireless medium access con-

trol (MAC) and physical layer (PHY) specifications for low-rate wireless personal

area networks (LR-WPANs). Standard.

Srinivasan, R. (1995, August).RFC-1833: Binding Protocols for ONC RPC Version 2.

Internet Engineering Task Force.

Stubblebine, S. (1995). Recent-secure authentication: Enforcing revocation in dis-

tributed systems. InProceedings of the 1995 IEEE Symposium on Security and Pri-

vacy, pp. 224–235. IEEE Computer Society.

Stubblebine, S. G. and R. N. Wright (1996). An authentication logic supporting syn-

chronization, revocation, and recency. InProceedings of the 3rd ACM Conference on

Computer and Communications Security, New York, NY, USA, pp. 95–105. ACM

Press.

Szczechowiak, P., L. B. Oliveira, M. Scott, M. Collier, and R. Dahab (2008). Nanoecc:

testing the limits of elliptic curve cryptography in sensornetworks. InProceedings

of the 5th European conference on Wireless sensor networks, EWSN’08, Berlin,

Heidelberg, pp. 305–320. Springer-Verlag.

Taha, W. (2004). Resource-aware programming. InICESS, pp. 38–43.

Taha, W. and T. Sheard (1997). MetaML: Multi-stage programming with explicit anno-

tations. InProceedings of the 1997 ACM SIGPLAN symposium on partial evaluation

and semantics-based program manipulation, PEPM ’97, New York, NY, USA, pp.

203–217. ACM.

Vairo, C., M. Albano, and S. Chessa (2008). A secure middleware for wireless sensor

networks. InProceedings of the 5th Annual International Conference on Mobile and

184

Ubiquitous Systems: Computing, Networking, and Services, Mobiquitous ’08, ICST,

Brussels, Belgium, Belgium, pp. 59:1–59:6. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering).

Watson, M. (2013). Type checking implementation in scalaness/nest. Master’s thesis,

University of Vermont.

Whitehouse, K., G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P. Dutta, and

D. Culler (2006). Marionette: using rpc for interactive development and debugging

of wireless embedded networks. InIPSN ’06: Proceedings of the 5th international

conference on Information processing in sensor networks, New York, NY, USA, pp.

416–423. ACM.

Winsborough, W. H. and N. Li (2002, June). Towards practicalautomated trust negoti-

ation. InProceedings of the IEEE 3rd International Workshop on Policies for Dis-

tributed Systems and Networks. IEEE Press.

Winsborough, W. H. and N. Li (2004). Safety in automated trust negotiation. InPro-

ceedings of the 2004 IEEE Symposium on Security and Privacy, Los Alamitos, CA,

USA, pp. 147. IEEE Computer Society.

Winsborough, W. H., K. E. Seamons, and V. E. Jones (2000). Automated trust negotia-

tion. In Procedings of the DARPA Information Survivability Conference and Exposi-

tion. Volume 1, pp. 88–102. IEEE Computer Society.

Winslett, M., N. Ching, V. Jones, and I. Slepchin (1997). Assuring security and privacy

for digital library transactions on the web: Client and server security policies. In

Proceedings of the IEEE International Forum on Research andTechnology Advances

in Digital Libraries, Washington, DC, USA, pp. 140–151. IEEE Computer Society.

Woo, T. Y. C. and S. S. Lam (1993). Authorizations in distributed systems: A new

185

approach.Journal of Computer Security 2(2-3), 107–136.

XSB Inc. (2006). XSB home page.http://xsb.sourceforge.net .

Yu, T., X. Ma, and M. Winslett (2000). PRUNES: An efficient andcomplete strategy

for automated trust negotiation over the internet. InProceedings of the 7th ACM

conference on Computer and communications security, New York, NY, USA, pp.

210–219. ACM Press.

Yu, T., M. Winslett, and K. E. Seamons (2001). Interoperablestrategies in automated

trust negotiation. InProceedings of the 8th ACM conference on Computer and Com-

munications Security, New York, NY, USA, pp. 146–155. ACM Press.

186

http://xsb.sourceforge.net

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Security Model
	Related Work and Contributions
	Summary of Contributions

	Dissertation Organization

	Trust Management
	Components of Trust Management Systems
	Structure of an Authorization Decision

	Features of Trust Management Systems
	Formal Foundation
	Authorization Procedure. Authorization Complexity
	Public Key Infrastructure (PKI)
	Threshold and Separation of Duty Policies
	Local Name Spaces
	Role-Based Access Control
	Delegation of Rights
	Certificate Validity
	Credential Negation
	Certificate Revocation
	Distributed Certificate Chain Discovery

	Foundations of Authorization
	The RT Trust Management System
	Features
	Example
	Semantics
	Implementation

	SpartanRPC and Sprocket
	Overview and Applications
	Technical Foundations
	Duties and Remotability
	Syntax and Semantics
	Remotable Interfaces

	Dynamic Wires
	Component IDs, Component Managers
	Syntax and Semantics
	Callbacks and First-Class IDs

	Security Policy Specification
	RPC Server Side Logic
	RPC Client Side Logic
	Example

	The SpartanRPC Implementation
	Authorization and Security Protocols
	Identifying Services Over the Air
	Rewriting SpartanRPC to nesC

	DScalaness/DnesT
	Overview of DScalaness/DnesT Design
	Modules as Staging Elements
	Typing
	Cross-Stage Migration of Types and Values.

	The DnesT language
	Syntax and Features of DnesT
	Semantics of DnesT
	DnesT Type Checking

	The DScalaness Language
	Syntax of DScalaness
	Semantics of DScalaness
	Serialization and Lifting
	DScalaness Type Checking
	Foundational Insights and Type Safety

	Scalaness/nesT
	NesT
	Component Specifications
	External Libraries
	Structure Subtyping
	Safe Casts
	Array Operations

	Scalaness
	Scala Compiler Organization
	Liftable Types
	Lifting
	MetaType
	Module Type Annotations
	Component Declarations
	Runtime Support

	Evaluation
	Field Example
	Sprocket
	Memory Overhead
	Transient and Steady State Processor Overhead
	Transient Times for Directed Diffusion
	Snowcloud with Sprocket

	Scalaness/nesT
	Snowcloud with Scalaness
	Memory Usage

	Conclusion
	Future Work

	Scalaness/nesT Sample
	References

